点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:1.24MB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S的步骤:对区间[a,b作划分 a=x
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文档格式:PPT 文档大小:1.26MB 文档页数:22
一、近似计算 二、计算定积分 三、求数项级数的和 四、欧拉公式 五、小结思考题
文档格式:PPT 文档大小:335KB 文档页数:7
一、案例 二、概念和公式的引出 三、进一步练习
文档格式:PDF 文档大小:224.49KB 文档页数:10
教学目的 本节讨论测度空间的乘积空间,并且证明一个重要的定理 —Fubini 定理. 本节要点 乘积测度的构造利用了§2.2 测度的延拓定理. Fubini 定理是 积分理论的基本定理之一,它是关于二元函数的二重积分,累次积分交换积 分顺序的定理.Fubini 定理在理论推导和计算积分方面有广泛的应用
文档格式:PPT 文档大小:672.5KB 文档页数:19
第六章学习的定积分是一元函数y=f(x)在闭区间[a,b 上的积分;下面我们来学习二元函数在有界闭区域D上的 积分,即二重积分 本章用定积分的基本思想去建立二重积分的概念, 推导它的计算公式,研究它的计算方法. 在定积分的应用中,已给出了一些特殊立体(截面面积 已知的立体和旋转体)体积的计算方法;但对于一般立体的 体积问题却仍不会处理
文档格式:DOCX 文档大小:983.46KB 文档页数:43
第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 第七章 常微分方程 第八章 空间解析几何与向量代数 第九章 多元函数微分法及其应用 第十章 重积分 第十一章 曲线积分与曲面积分 第十二章 无穷级数
文档格式:PPT 文档大小:179.5KB 文档页数:2
第一章 函数与极限 第二章 导数与微分 第三章 中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 第七章 多元函数微分法及其应用 第八章 重积分 第九章 曲线积分与曲面积分 第十章 无穷级数 第十一章 微分方程
文档格式:PDF 文档大小:11.3MB 文档页数:586
第一章 实数集与函数 第二章 数列极限 第三章 函数极限 第四章 函数的连续性 第五章 导数和微分 第六章 微分中值定理及其应用 第七章 实数的完备性 第八章 不定积分 第九章 定积分 第十章 定积分的应用 第十一章 反常积分 第十二章 数项级数 第十三章 函数列与函数项级数 第十四章 幂级数 第十五章 傅里叶级数 第十六章 多元函数的极限与连续 第十七章 多元函数微分学 第十八章 隐函数定理及其应用 第十九章 含参量积分 第二十章 曲线积分 第二十一章 重积分 第二十二章 曲面积分 第二十三章 流形上微积分学初阶
文档格式:PDF 文档大小:256.46KB 文档页数:21
对函数的许多性态研究,最终也将由泰勒公式(Taylor 公式)给出理论依据。例 如局部极值问题,以及用于求极限的洛必达法则,都是以泰勒公式为理论依据而得 到某些有效的方法
首页上页3031323334353637下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有