点击切换搜索课件文库搜索结果(410)
文档格式:DOC 文档大小:245KB 文档页数:3
北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.1 多重线性映射 12.2 线性空间的张量积 12.2.1 域 K 上的二线性空间的张量积的定义(归纳地有多个张量积的定义)
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
文档格式:PPT 文档大小:310.5KB 文档页数:14
定理3.5.1(线性方程组有解的判别定理): 线性方程组(3.5.1)有解的充要条件是它的 系数矩阵A与增广矩阵A有相同的秩
文档格式:DOC 文档大小:106KB 文档页数:4
§3.1消元法 1.解以下线性方程组: (i)x1-2x2+x3+x4=1 x1-2x2+x3-x4=-1
文档格式:DOC 文档大小:253.5KB 文档页数:5
12-3张量 12.3.1线性变换的张量积的矩阵与线性变换的矩阵的关系 设V是域K上的n维线性空间,G和是V的两组基,且 (n)= (1) 设a∈V在(1n)下的坐标为(x1,x),则由前面的知识,可得 x :=T (2) ) 由此可知,坐标是逆变的 现在考虑V的对偶空间n在的对偶基为f,在v的 对偶基为gg,那么就有
文档格式:PPT 文档大小:1.17MB 文档页数:77
5.1向量空间的定义和例子 5.2子空间 5.3向量的线性相关 5.4基和维数 5.5坐标 5.6向量空间的同构 5.7矩阵的秩齐次线性方程组的解空间
文档格式:DOC 文档大小:55KB 文档页数:1
命题在同构意义下张量积满足交换律、结合律以及与直和的分配律,即 VOV= V1(2V3)=(V1V2)V3 V1(2V3)=(V1V2)⊕(VV3) 证明利用张量积的定义性质。 12.2.2线性变换的张量积的定义 定义12.5线性变换的张量积 设V1,V2为K线性空间,A为V1上的线性变换,B为V2上的线性变换。定义A和 B的张量积(记为AB)为V1V2上的线性变换: AB:V1V2→V1V2
文档格式:DOC 文档大小:891KB 文档页数:29
矩阵概念的一些背景 在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解线性方程组的过程也表现为变换这些矩阵的过程除了线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的
文档格式:DOC 文档大小:116.5KB 文档页数:3
一、向量的线性相关与线性无关 定义 2 设 V 是数域 P 上的一个线性空间
文档格式:DOC 文档大小:82KB 文档页数:2
7-1幂零线性变换的 Jordan标准型 A是数域K上n维线性空间V上的线性变换,如果存在正整数m,使A=0,则称A是一个 幂零线性变换. 对数域K上n阶方阵A,如果存在正整数m,使Am=0,则称A为幂零矩阵 命题幂零线性变换的特征值等于0 证明设是V上幂零线性变换A的特征值,则存在V中非零向量a,使得 Aa= 假设A=0
首页上页3132333435363738下页末页
热门关键字
搜索一下,找到相关课件或文库资源 410 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有