点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:1.34MB 文档页数:13
一、n维向量的概念 二、n维向量的表示方法 三、向量空间 四、小结思考题
文档格式:PPT 文档大小:2.26MB 文档页数:75
1全排列 把n个不同的元素排成一列,叫做这n个元 素的全排列(或排列) n个不同的元素的所有排列的种数用P表示
文档格式:PPT 文档大小:250KB 文档页数:16
1.函数列的几种收敛定义 (1)点点收敛:记作fn→EVx∈E,Ve>0,3Nx>0,tn≥2x,有丨fn(x)-f(x)k (2)一致收敛: V>0,3N>0,n≥n,tx∈,有fn(x)-f(x)k注:近似地说一致收敛是函数列
文档格式:PPT 文档大小:102KB 文档页数:32
总体 总体是指的一个随机变量X 、 样本 样本是指的与总体X的分布完全一样的n个 相互独立的一组随机变量Xx2n其中n 称为样本容量、而对样本做一次观察得到的具体的试验数 据,称作样本值,用小写字母1x2xn表示
文档格式:PDF 文档大小:158.46KB 文档页数:23
定义3.1设D是一个n阶行列式在D中 任意选定k个行,k个列(1≤k≤n) ( 1)这些行、列相交处的元素按其原有的 工 相对位置就构成一个k阶行列式M, 称为D的一个k阶子式; (2)这些行、列以外的元素按其原有的相 对位置就构成一个n-k阶行列式M 称为M的余子式;记为M
文档格式:PDF 文档大小:115.9KB 文档页数:12
3.8矩阵的秩数 定义8.1设A是任意矩阵若A=0,则 说A的秩数为0;若A≠0,则A的非零子式的 最高阶数就称为A的秩数,记为秩A 显然对于任意的mxn矩阵A,均有 秩A≤min{m,n}.当秩A=min{m,n}时,称 是满秩矩阵;特别地,当秩A=m时,称之 为行满秩的;当秩A=n时,称之为列满秩的
文档格式:DOC 文档大小:408.5KB 文档页数:7
第四章向量组的线性相关性 4.1向量及其运算 1.向量:n个数a1,a2,an构成的有序数组,记作a=(a1,a2,an), 称为n维行向量 a称为向量a的第i个分量 a;∈R称a为实向量(下面主要讨论实向量) a∈C称a为复向量 零向量:θ=(0,0,…,0) 负向量:(-a)=(-a1,-a2,…,-an) 2.线性运算:a=(a1,a2,,an),B=(b1,b2,bn) 相等:若a1=b(i=1,2,,n),称a=B. 加法:a+B=(a1+b1,a2+b2,,an+bn) 数乘:ka=(ka1,ka2,,kan)
文档格式:DOC 文档大小:140KB 文档页数:3
第五章5-3实与复二次型的分类 1.复、实二次型的规范形 定理复数域上的任一二次型f在可逆变数替换下都可化为规范形 zi+…+z, 其中r是f的秩.复二次型的规范形是唯一的. 证明复数域C上给定二次型) f=, x,x, ( =ai 设它在可逆线性变数替换X=TZ下变为标准型 d1z2+d2z2+…an 这相当于在C上n维线性空间V内做一个基变换 (n2n)=(1,2EnT 使对称双线性函数f(a,B)在新基下的矩阵成对角形
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:PDF 文档大小:254.59KB 文档页数:37
正项级数 定义 9.3.1 如果级数∑ ∞ n=1 n x 的各项都是非负实数,即 xn ≥ 0,n = 1,2,…, 则称此级数为正项级数
首页上页3334353637383940下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有