点击切换搜索课件文库搜索结果(965)
文档格式:PPT 文档大小:483KB 文档页数:17
定积分的分部积分法 一、分部积分公式 定积分也可以象不定积分一样进行分部积分, 设函数u(x)、v(x)在区间[a,b]上具有连续导数,则 有udv=[-rvdu 定积分的分部积分公式
文档格式:DOC 文档大小:45KB 文档页数:2
经济数学基础 第6章定积分 第五单元定积分的分部积分法 一、学习目标 通过本节课的学习,掌握定积分的分部积分法. 二、内容讲解 1.不定积分分部积分公式 Juv'dx=uv-vu'dx-
文档格式:PPT 文档大小:451KB 文档页数:27
曲线积分与曲面积分 前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green公式、 Gauss公 式和 Stokes公式,这些公式揭示了存在于各 种积分之间的某种联系
文档格式:PDF 文档大小:166.19KB 文档页数:7
教学目的本节讨论直线上的 Riemann积分(包括广义 Riemann积分)与 Lebesgue积分之间的关系.同时给出 Riemann可积函数的一个判别条件. 本节要点用测度理论可以给出函数 Riemann可积的一个简明的充要条 件.本节的主要结果表明 Lebesgue积分是 Riemann积分的推广.利用 Lebesgue积分的性质,可以解决一些 Riemann积分的问题
文档格式:DOC 文档大小:397KB 文档页数:9
第十二章重积分 12-1重积分的概念与性质 12-2二重积分的计算 12-3三重积分的计算 12-4对空间曲面积分 12-Exe-1习题讨论:重积分的计算 三重积的计算习题讨论 讨论题目: 计算累次积分 1=dx Sindy+dx Sindy 2√x 2.计算二重积分=y-x-yo, 其中D={xy)Maxp)≤ 8求二重积分:1=xy
文档格式:PDF 文档大小:7.53MB 文档页数:776
第六章 多变量函数的微分法 §1.多变量函数的极限.连续性 §2.偏导函数多变量函数的微分 §3.隐函数的微分法 §4.变量代换 §5.几何上的应用 §6.台劳公式 §7.多变量函数的极值 第七章 带参数的积分 §1.带参数的常义积分 §2.带参数的广义积分,积分的一致收性 §3.广义积分中的变量代换,广义积分号下微分法及积分法 §4.尤拉积分 §5.福里叶积分公式
文档格式:PDF 文档大小:147.51KB 文档页数:26
本章主要讨论多元函数的积分学.对多元函数来说,积分区域是多样的.就二元函数而 言,积分域可以是平面内的区域或平面内的曲线.对三元函数来说,积分域可以是空间的立 体,空间的曲线和曲面等.通过以下各章的学习,我们会发现这些积分定义中的思想是相同 的,但各种积分的计算则有较大的差别读者在多元积分学中应在掌握各种积分的定义的基 础上,熟练掌握各种积分的计算方法
文档格式:DOC 文档大小:101KB 文档页数:2
1.二重积分、三重积分、 第一类曲线积分、第一类曲面积分的概念 1.对照重积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质
文档格式:PDF 文档大小:7.53MB 文档页数:776
第六章 多变量函数的微分法 §1.多变量函数的极限.连续性 §2.偏导函数多变量函数的微分 §3.隐函数的微分法 §4.变量代换 §5.几何上的应用 §6.台劳公式 §7.多变量函数的极值 第七章 带参数的积分 §1.带参数的常义积分 §2.带参数的广义积分,积分的一致收性 §3.广义积分中的变量代换,广义积分号下微分法及积分法 §4.尤拉积分 §5.福里叶积分公式
文档格式:PPT 文档大小:2.28MB 文档页数:109
第一节 二重积分的概念与性质 一、问题的提出 二、二重积分的概念 三、二重积分的性质 第三节 二重积分的应用 一、问题的提出 二、曲面的面积 三、平面薄片的重心 四、平面薄片的转动惯量 五、平面薄片对质点的引力 第五节 利用柱面坐标和球面坐标计算三重积分 一、利用柱面坐标计算三重积分 二、利用球面坐标计算三重积分 第六节 含参变量的积分 一、含参变量积分的连续性 二、含参变量的函数的微分 三、莱布尼茨公式
首页上页3435363738394041下页末页
热门关键字
搜索一下,找到相关课件或文库资源 965 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有