点击切换搜索课件文库搜索结果(381)
文档格式:PDF 文档大小:938.28KB 文档页数:7
基于前驱体合成与氨气氮化两步法,通过对前驱体合成关键参数B源/N源比、分散剂种类、前驱体干燥方式进行调控,实现了大比表面积、少层氮化硼纳米片材料的制备。其优化条件为以硼酸为硼源,尿素为氮源,硼酸与尿素摩尔比为1∶30,甲醇和去离子水作为分散剂,利用真空冷冻干燥方式合成前驱体。将前驱体在氨气气氛下900 ℃保温3 h合成了氮化硼纳米片。利用X射线衍射测试、X射线光电子能谱测试、拉曼光谱测试、热重分析测试等对合成产物进行了物相和结构表征,利用扫描电子显微镜、原子力显微镜、透射电子显微镜、氮气吸脱附曲线等对合成产物进行了形貌及比表面积表征。结果表明:合成的氮化硼为六方氮化硼纳米片(h-BNNSs),纯度高,形貌类石墨烯,层数为2~4层,厚度平均为1 nm,比表面积为871.8 m2·g?1,单次产物质量平均可达240 mg,合成产物平均产率可达96.7%。该方法简单易操作,实现了大比表面积少层氮化硼的制备,有助于氮化硼在各应用领域的研究,如氮化硼/石墨烯复合材料、纳米电子器件、污染物的吸附、储氢等
文档格式:PDF 文档大小:5.32MB 文档页数:7
以氧化铝溶胶为黏结剂、金属Fe为烧结助剂, 采用冷压-烧结制备出铝电解用Fe-TiB2/Al2O3复合阴极材料, 利用20A电解试验研究其电解性能; 利用能谱仪(EDS) 对电解试验前后的复合阴极材料进行了成分物相分析, 研究电解过程中各种元素迁移行为.研究结果表明: 金属Fe作为烧结助剂在烧结过程中能有效的填充骨料之间的空隙, 使该复合阴极材料的烧结致密度显著提高; 20 A电解试验过程电压稳定, 电流效率93. 2%, 原铝中铝元素质量分数为99. 47%, 杂质元素质量分数为0. 53%.在电解试验后, 铝液能有效润湿阴极表面, 表明Fe-TiB2/Al2O3复合阴极材料具有较理想的可润湿性; 从复合阴极电解后的能谱分析可知, 在电解过程中, 碱金属主要是通过液态电解质渗透进入阴极材料中, 随后又逐渐渗透进入黏结剂相中, 并在骨料之间氧化铝溶胶和金属烧结助剂均未能充分填充的空隙进行富集. K元素较Na元素对黏结相的渗透力更强; 与此同时, 阴极表面生成的Al通过复合材料的空隙进入阴极内部, 而Fe金属会利用材料内部的空隙反向扩散至铝液层中.在试验中, 阴极表面的铝液层的稳定存在是该阴极高效稳定运行的基础
文档格式:PPT 文档大小:2.58MB 文档页数:28
1现代家具设计的开路先锋米切尔蒂奈特(奥地利) ( Michael Thonet,1796-1871年) 蒂奈物是奥地利人,生于莱茵河畔的 Boppard城,并于1819年在那里建立了一个家具作坊 1836年蒂奈特以层压板的新工艺获得专利,而后于1856年他又获得工业化生产弯曲木家具的 专利,此前在1851年英国伦敦博览会上,他展出了自己的新产品并获一项铜奖蒂奈特家具 的最大特点是物美价廉,适合大批量生产即使进入20世纪其质量仍获得许多现代设计师的 认同勒柯布西耶早年为自己的建筑室内所选择的家具中即以蒂奈特椅为主蒂奈特椅的另外 一个重要特性是便于运输它们虽非折叠式设计但各构件间易于拆装从而使运输空间达到极小 蒂奈特椅至今仍在生产中包括数种变体形式它是20纪最为成功的椅子之一除了英国的 温莎椅和中国的明式椅很难有其他的椅子能超过蒂奈特椅的生产年限。然而对蒂奈特椅而言
文档格式:DOC 文档大小:1.82MB 文档页数:42
掌握样条函数及性质、B-样条及性质、三次样条插值。 借助于多项式来逼近,虽然有很多优点,但由于多项式乃幂级数的特例,其在 一点附近的性质足以决定它的整体性质。然而自然界较大范围内的许多现象,如物 理或生物现象间的关系往往呈现互不关联、互相割裂的本性。亦即在不同区域中, 它们的性状可以完全不相关。另一方面,从数学上讲,例如在多项式插值理论中, 具有n个插值点的一元插值多项式是一个-1次的多项式,它可能有n-3个拐点。这 对于比较平滑的函数来说就不是那么理想了
文档格式:PDF 文档大小:1.46MB 文档页数:405
献给彭ト罗克和芒特高梅利伯爵托马斯(Right Hon ourable, Thomas, Earl of Pembroke and ontgomery)男爵 何赫巴特( Baron Herbert of Cardiff)、勋爵罗斯 Lord Ross of K endal, Par, Fitzhugh, M armion, St. Q uintin and Shurland)、今上底枢密院总裁( President of His Majesty's Most Honourable Privy Council、兼威尔德、南 威尔士两郡民政长(Lord Lieutenant of- the County of ilts and of Sousth ales)大人: 这部论文底完成是大人亲眼所见的,它之出而问世,亦 是受命于大人的,因此,它现在就凭其应有的权利,来要求 大人赏给它数年前所允许的那层保障。我并不以为只要在书 首署上任何一个大名,就能把书中的错误遮掩了。凡一种出 版物之成败,全看它底价值或读者底爱好。在真理方面所最 需要的,莫过于让读者摒除成见,平心领略,而能促使舆论 给予重视的,又莫过于大人,因为举世都承认大人是洞明事 道,深入理藏的
文档格式:PDF 文档大小:242.22KB 文档页数:20
一、运输需求量预测的基本概念 (一)预测的基本概念 预测是人们预选的、事前的对某事物发展的一种推测,一种测算,测算事物发展变化可 能出现的前景和趋势,有时还要推测事物发展变化可能达到的水平和规模,推测事物间相互 联系、相互制约、相互影响以及影响程度等等。 运输需求量预测就是根据运输及其相关变量过去发展变化的客观过程和规律性,参照当 前已经出现和正在出现的各种可能性,运用现代管理的、数学的和统计的方法,对运输及其 相关变量未来可能出现的趋势和可能达到的水平的一种科学推测
文档格式:PDF 文档大小:6.11MB 文档页数:8
针对传统可溶性压裂球材质存在的缺点,采用铸造法制备性能优异的可溶性镁合金,系统研究了铝含量对可溶性镁合金组织、溶解性能及力学性能的影响.结果表明:可溶性镁合金组织由α-Mg和β-Mg17Al12相组成,随着铝含量的增多,组织中β-Mg17Al12相数量增多,呈连续网状分布于α相晶界处,并且α晶粒也变得粗大.可溶性镁合金在氯化钾(KCl)溶液中可自行溶解,且随KCl浓度的升高,溶解速率变大,在质量分数为3%的KCl中溶解性能最佳.随着铝含量的增加,可溶性镁合金的溶解速率变大,室温下溶解速率最高可达7.42 mg·h-1·cm-2.溶解产物粒度分析结果显示,中值粒径D50为38.691 μm,溶解产物物相为Mg17Al12和Mg (OH)2.可溶性镁合金的抗压强度最高可达430 MPa,变形量为3.0%时试样断裂,随着铝含量的增加,可溶性镁合金的塑性降低
文档格式:PDF 文档大小:3MB 文档页数:8
采用非等温热重的方法,在30% CO+70% N2(体积分数)气氛下,以10 K·min-1升温至1123 K的过程中,比较了铁酸钙与赤铁矿的逐级还原过程及其还原动力学.结果表明:铁酸钙和赤铁矿开始还原温度分别为873 K和623 K;由反应速率与反应度的关系及分阶段X射线衍射物相分析发现,铁酸钙还原过程为两段式反应(CaO·Fe2O3→2CaO·Fe2O3→Fe),而赤铁矿还原过程为传统的三段式反应(Fe2O3→Fe3O4→FeO→Fe).通过Freeman-Carroll法计算得知铁酸钙和赤铁矿的还原平均活化能分别为49.88和43.74 kJ·mol-1;铁酸钙还原过程符合随机成核随后生长模型,动力学模式函数为Avrami-Erofeev方程,其积分形式为[-ln (1-α)]n;而赤铁矿还原过程动力学机理分为两部分,在还原度α为0.1~0.5时,为三级化学反应模型,模式函数积分形式为1-(1-α)3;在α为0.5~0.9时,符合二维圆柱形扩散模型,动力学模式函数为Valensi方程,其积分形式为α+(1-α)ln (1-α)
文档格式:PDF 文档大小:3.08MB 文档页数:14
以电动汽车车用额定容量为42 A·h的三元方壳锂离子电池单体和模组为研究对象,研究其在加热条件下单体的绝热热失控特性及成组后侧向加热热失控蔓延特性。结果表明,锂离子电池在发生热失控时,内部最高温度可达920 ℃,电池表面和内部最大温差达403 ℃;热失控首先在迎向热流的面触发,随后蔓延至整个电池;满电状态下的锂离子电池内部热失控蔓延时间介于8~12 s;热失控蔓延过程中锂离子电池的温度特征与绝热热失控测试相比存在较大差异性;热失控喷发颗粒物中,LiF及石墨质量分数占80%以上;模组中失控电池产生的总能量中用于自身加热和喷发损失的占90%左右,热失控释放总能量的10%足以触发热失控蔓延。本文为研究三元锂离子电池模组安全设计、热失控蔓延抑制及新能源汽车的火灾事故调查提供了参考
文档格式:PDF 文档大小:6.16MB 文档页数:7
通过在Na2SiO3-KOH基础电解液中加入石墨烯添加剂,在镁锂合金表面制备出一层自润滑的含碳陶瓷层. 利用扫描电镜、原子力显微镜以及X射线衍射仪分析了陶瓷层的表面形貌、粗糙度以及物相组成,利用摩擦磨损试验仪对陶瓷层在室温下的摩擦学性能进行研究. 其结果表明,加入石墨烯后制备出的含碳陶瓷层表面放电微孔分布均匀,且其微孔尺寸和表面粗糙度均明显降低. 相比于镁锂合金,陶瓷层的表面硬度也得到明显的提高. 此外,含碳陶瓷层主要由SiO2、Mg2SiO4以及MgO物相组成,而石墨烯则以机械形式弥散分布于陶瓷层中并起到减摩作用. 当石墨烯体积分数为1%时,陶瓷层表面显微硬度为1317.6 HV0.1 kg,其摩擦系数仅为0.09,其耐磨性明显提高. 同时,陶瓷层磨痕的深度和宽度均明显小于镁锂合金,而且较为光滑,表明陶瓷层表面没有发生严重的黏着磨损
首页上页3233343536373839下页末页
热门关键字
搜索一下,找到相关课件或文库资源 381 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有