点击切换搜索课件文库搜索结果(383)
文档格式:PPT 文档大小:917.5KB 文档页数:62
4.1数值微积分 4.1.1 近似数值极限及导数 4.1.2 数值求和与近似数值积分 4.1.3 计算精度可控的数值积分 4.1.4 函数极值的数值求解 4.1.5 常微分方程的数值解 4.2矩阵和代数方程 4.2.1 矩阵运算和特征参数 4.2.2 矩阵的变换和特征值分解 4.2.3 线性方程的解 4.2.4 一般代数方程的解 4.3 概率分布和统计分析 4.3.1 概率函数、分布函数、逆分布函数和随机数的发生 4.3.2 随机数发生器和统计分析指令 4.4 多项式运算和卷积 • 4.4.1 多项式的运算函数 • 4.4.2 多项式拟合和最小二乘法 • 4.4.3 两个有限长序列的卷积
文档格式:PDF 文档大小:184.19KB 文档页数:8
在数学分析课程中我们已经熟悉 Riemann积分.在处理连续函数或者逐段连续函数 时,在计算一些几何和物理的量时它是很有用的但它也存在一些缺陷例如, Riemann积 分对被积函数的要求较高,它要求被积函数“基本上”是连续的(其确切含义将在§4.4 讨论),在处理极限与积分交换次序时,需要对函数列加上一致收敛性的条件等由于这些 缺陷,使得 Riemann积分在处理分析数学中的一些问题时显得不够有力因此需要建立 新的积分的理论.二十世纪初, Lebesgue建立了一种新的积分理论新的积分理论消除了 上述缺陷,并且包含了原有的 Riemann积分理论
文档格式:PDF 文档大小:126.3KB 文档页数:6
改造积分定义的目的一是为了扩展可积范围,二是为了使得操作更方便。对 (R)积分而言,积分与极限交换顺序需要验证一个较为苛刻的条件:“fn(x)在E 上一致收敛于f(x)”,将“一致收敛”削弱为“处处收敛”甚至“几乎处处收 敛”是一种思路,在此介绍另一种削弱“一致收敛”条件的方法 从集合论的角度讲:“fn(x)在E上一致收敛于f(x)”是指0>0,No >0,当n>N时,E[|fn(x)-f(x)|≥0]=中,之所以我们认为“一致收敛” 条件苛刻,就在于它要求E[|fn(x)-f(x)≥0]从某项以后永远为空集
首页上页3233343536373839
热门关键字
搜索一下,找到相关课件或文库资源 383 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有