点击切换搜索课件文库搜索结果(102)
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss 公式是 Green 公式的推广 下面我们 从另一个角度来推广Green 公式。 Green 公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式。 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:272.5KB 文档页数:13
对一般的数字行列式,如果它的元素之间没有特定的规律, 其计算方法是: 1)利用行列式性质把它化为上三角或下三角行列式,则 行列式的值等于其主对角线上元素的连乘积; 2)选定某一行(列),利用行列式性质把其中元素尽可 能多的化为0;然后按这一行(列)展开,如此继续下去 可得结果
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法) 设f:U→V,g:U→V为线性映射,定义f+g为 f+g:U→V, af(a)+g(a)(a∈U) 定义kf(Vk∈K)为 kf:u→v akf(a)(a∈U) 说明f+g与kf仍为线性映射。 命题Hom(U,V)在加法和数乘下构成数域K上的线性空间。 证明逐项验证
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:PPT 文档大小:1.11MB 文档页数:36
对坐标的曲面积分 一、基本概念 观察以下曲面的侧(假设曲面是光滑的) 曲面分上侧和下侧曲面分内侧和外侧
文档格式:PDF 文档大小:17.58MB 文档页数:29
所谓含参量的积分是指如下两大类积分: 1.() f(x, y)dy 若对于x∈[a,b]上述积分均是有意义的,即[a,B]可以到无穷,积分是收敛的 (若为广义积分的话)。也就是说,作为y的函数,f(x,y)在[a,B]上可积或广 义可积,则F(x)在[a,b]上就是关于x的函数,从积分本身的性质来讨论这类积
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:DOC 文档大小:232.5KB 文档页数:2
第四章4-3线性映射与线性变换 4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件: i)、(a+)=(a)+(),(a,B∈U); i)、(ka)=k(a),(a∈U,k∈K), 则称为(由U到V的)线性映射, 由数域K上的线性空间U到V的K的线性映射的全体记为Hom(U,V),或简记为 Hom(U,). 定义中的i和)二条件可用下述一条代替 (ka+1)=k(a)+kq(B),(a,B∈U,k,l∈K)
文档格式:DOC 文档大小:51.5KB 文档页数:1
定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法:
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 102 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有