点击切换搜索课件文库搜索结果(41)
文档格式:PDF 文档大小:341.76KB 文档页数:53
L 为简单闭曲线(或 Jordan 曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交。 设D为平面上的一个区域。如果D内的任意一条封闭曲线都可以 不经过D外的点而连续地收缩成D中一点,那么D称为单连通区域
文档格式:PDF 文档大小:341.76KB 文档页数:53
设L为平面上的一条曲线,它的方程是r()=x()+y()j,a≤t≤B 如果ra)=r(B),而且当t12∈(a,B),1≠12时总成立r(1)≠r(t2),则称 L为简单闭曲线(或 Jordan曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交。 设D为平面上的一个区域。如果D内的任意一条封闭曲线都可以 不经过D外的点而连续地收缩成D中一点,那么D称为单连通区域 否则它称为复连通区域
文档格式:PPT 文档大小:451KB 文档页数:27
曲线积分与曲面积分 前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green公式、 Gauss公 式和 Stokes公式,这些公式揭示了存在于各 种积分之间的某种联系
文档格式:PPT 文档大小:451KB 文档页数:27
前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green公式、 Gauss公 式和 Stokes公式,这些公式揭示了存在于各 种积分之间的某种联系
文档格式:PPT 文档大小:451KB 文档页数:27
曲线积分与曲面积分 前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green公式、 Gauss公 式和 Stokes公式,这些公式揭示了存在于各 种积分之间的某种联系
文档格式:PPT 文档大小:338.5KB 文档页数:17
一、斯托克斯(stokes)公式 定理设为分段光滑的空间有向闭曲线是以 为边界的分片光滑的有向曲面,的正向与 的侧符合右手规则,函数P(x,y,z),Q(x,y,z) R(x,y,z)在包含曲面在内的一个空间区域内具 有一阶连续偏导数,则有公式
文档格式:DOC 文档大小:725.5KB 文档页数:14
第十九讲第二型空间曲面积分 Gauss公式 5-4-1第二型曲面积分 5-4-2 Gauss公式 课后作业: 课后作业: 阅读:第五章第四节:第二型曲面积分pp.165-172 预习:第五章第五节: Gauss公式和 Stokes公式pp.173-181 作业:习题4:pp172--173:1,(2),(3,(4),(6,(8),(10),(12) 习题5:p.181--182:1,(1),(3),(5),(7);2;3,(3) 5-4第二型曲面积分、 Gauss公式 本节专门讨论空间向量场
文档格式:PPT 文档大小:451KB 文档页数:27
前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green 公式、Gauss公 式 和 Stokes 公式,这些公式揭示了存在于各 种积分之间的某种联系
文档格式:PDF 文档大小:16.8MB 文档页数:233
第一节对弧长的曲线积分 一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法 三、小结 第二节对坐标的曲面积分 一、对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算方法 三、两类曲面积分之间的关系 第三节格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积 四、曲线积分的基本定理 第四节对面积的曲面积分 一、概念的引入 二、对面积曲面积分的概念与性质 三、对面积曲面积分的计算方法 第五节对坐标的曲面积分 三、两类曲面积分之间的关系 第六节高斯公式通量与散度 一、高斯公式 二、简单应用 三、物理意义——通量与散度 第七节 斯托克斯(Stokes)公式环流量与旋度 一、斯托克斯公式 三、环流量与旋度
文档格式:PDF 文档大小:976.47KB 文档页数:69
本章重点阐述梯度、散度、旋度三个重要概念及其在不同坐标系中的运算公式,它们三者之间的关系。其中包括两个重要定理:即Gauss theorem 和 Stokes theorem,以及二阶微分运算和算符运算的重要公式。 §0-1 标量场的梯度, 算符 Gradient of Scalar Field, Operator §0-2 矢量场的散度 高斯定理 Divergence of Vector Field, Gauss’s Theorem §0-3 矢量场的旋度斯托克斯定理 Rotation of Vector Field, Stoke’s Theorem §0-4 正交曲线坐标系中 运算的表达式 Expression of Operation on Orthogonal Curvilinear Coordinates Frame §0-5 二阶微分算符 格林定理 Second-order Difference Operator, Green’s Theorem §0-6 张量(并矢) 张量运算 Tensor (dyad)
上页12345下页
热门关键字
搜索一下,找到相关课件或文库资源 41 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有