点击切换搜索课件文库搜索结果(504)
文档格式:PPT 文档大小:1.57MB 文档页数:35
一、函数项级数的一般概念 1.定义: 设u1(x),2(),,n(x)是定义在ICR上的 函数,则∑un(x)=(x)+(x)+…+un(x) n=1 工士 称为定义在区间上的(函数项)无穷级数
文档格式:DOC 文档大小:77.5KB 文档页数:4
一个大型的公交公司: (1)年预算 2 亿元; (2)营业额与全部营运车辆的总里程 M 成正比, 总里程 M 与车辆数 B、员工总人数 W、燃油总量 F 的关系(统计分析而得的经验公式)是
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文档格式:PPT 文档大小:2.58MB 文档页数:71
一、函数项级数的一般概念 1.定义: 设u1(x),u2(x),,n(x),…是定义在IR上的 ∞ 函数,则∑un(x)=(x)+2(x)+…+un(x)+ n=1 称为定义在区间上的(函数项)无穷级数 ∞
文档格式:PDF 文档大小:120KB 文档页数:9
一、微分中值定理 1.证明:(1)方程x3-3x+c=0(c是常数)在区间,1内不可能有两个不同的实根;
文档格式:PDF 文档大小:249.35KB 文档页数:24
Fourier 变换及其逆变换 前面关于 Fourier 级数的论述都是对周期函数而言的,那么对于 非周期函数,又该如何处理呢? 在 +∞−∞ ),( 上可积的非周期函数 f x( )可以看成是周期函数的极限 情况,处理思路是这样的: (1) 先取 f x( )在[ ,] −T T 上的部分(即把它视为仅定义在[ ,] −T T 上 的函数),再以2T 为周期,将它延拓为 +∞−∞ ),( 上的周期函数 f x T ( );
文档格式:PDF 文档大小:252.21KB 文档页数:35
Lagrange 乘数法 在考虑函数的极值或最值问题时,经常需要对函数的自变量附加 一定的条件。例如,求原点到直线 ⎩⎨⎧ =++ =++ 632 ,1zyx zyx 的距离,就是在限制条件 + + zyx = 1和 + + zyx = 632 的情况下,计算函 数 222 ),,( ++= zyxzyxf 的最小值
文档格式:DOC 文档大小:239.5KB 文档页数:6
2凸函数及其应用 凸函数定义及其等价形式: 设f(x)在区间I上有定义,若对任意x1、x2∈I,A∈[0,1]成立不等式:
文档格式:PPT 文档大小:836.5KB 文档页数:29
无穷乘积的定义 设p1,P2,…,Pn,…(Pn≠0)是无穷可列个实数,我们称它 们的“积” PI'P2Pn... 为无穷乘积,记为∏Pn,其中n称为无穷乘积的通项或一般项
文档格式:PPT 文档大小:876.5KB 文档页数:29
无条件极值 定义12.6.1设D∈R为开区域,f(x)为定义在D上的函数, x=(x,x2,,x)D若存在x的邻域0(xo,r),使得 f(x)≥f(x)(或f(xo)≤f(x)),x∈O(xo,r), 则称x为f的极大值点(或极小值点);相应地,称f(xo)为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
首页上页3839404142434445下页末页
热门关键字
搜索一下,找到相关课件或文库资源 504 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有