第一节 映射与函数 一、集合 二、映射 三、函数 第二节 数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结 第三节 函数的极限 一、自变量趋于有限值时函数的极限 二、自变量趋于有无穷大时函数的极限 三、函数极限的性质 第四节 无穷小与无穷大 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 第五节 极限运算法则 一、无穷小的运算性质 二、极限运算法则 三、求极限方法举例 第六节 极限存在准则 两个重要极限 一、极限存在准则 二、两个重要极限 第七节 无穷小的比较 一、无穷小的比较 二、等价无穷小替换 第八节 函数的连续性与间断点 第九节 连续函数的运算与初等函数的连续性 一、连续函数的和、积及商的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 第十节 闭区间上连续函数的性质 一、最大值、最小值定理 二、介值定理