点击切换搜索课件文库搜索结果(515)
文档格式:DOC 文档大小:499KB 文档页数:7
第三章导数与微分 第一节导数的概念 思考题: 1.思考下列命题是否正确?如不正确举出反例 (1)若函数y=f(x)在点x处不可导,则f(x)在点x处一定不连续 答:命题错误.如y=|x|在x=0处不可导,但在此点连续 (2)若曲线y=f(x)处处有切线,则y=f(x)必处处可导 答:命题错误.如:y2=2x处处有切线,但在x=0处不可导
文档格式:PDF 文档大小:673.82KB 文档页数:8
一、判断题.请判断下列各陈述是否正确,正确的打“√”,错误的打“×”.(20分) 1.ABCD为一个四面体,点X在BC上,一直线通过X分别交ABAC于PQ.另一直线通过x分别交DB,DC于s.则PR与Qs的交点在AD上
文档格式:PDF 文档大小:305.32KB 文档页数:6
一、判断题.请判断下列各陈述是否正确,正确的打“√”,错误“×”.(20分) 1.设ABCD为一个四面体,点X在BC上,一直线通过分别交AB AC于PQ.另一直线通过x分别交DB,DC于R,S.则PR与Qs的交点在 上 ()
文档格式:PPT 文档大小:901.5KB 文档页数:44
函数极限 关于函数的极限,根据自变量的变化过程,我们主 要研究以下两种情况: 一、当自变量x的绝对值无限增大时,f(x)的变化趋势,即x→∞时,f(x)的极限 二、当自变量x无限地接近于x时,f(x)的变化趋势即x→x时,f(x)的极限
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PDF 文档大小:70.21KB 文档页数:21
定义 这种在一定条件下通过分子分母分别求导再 求极限来确定未定式的值的方法称为洛必达法则
文档格式:DOC 文档大小:588KB 文档页数:10
第六章定积分 第一节定积分的概念 思考题: 1.如何表述定积分的几何意义?根据定积分的几何意义推出下列积分的值: (1) xdx,(2)r2-x2dx -1 ,(3)[2* cos xdx, (4)xdx
文档格式:PPT 文档大小:643KB 文档页数:22
(1)当 时,函数 ( ) 及 ( ) 都趋于零;设x → a f x F x 定理 定义 这种在一定条件下通过分子分母分别求导再 求极限来确定未定式的值的方法称为洛必达法则
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss 公式是 Green 公式的推广 下面我们 从另一个角度来推广Green 公式。 Green 公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
首页上页4243444546474849下页末页
热门关键字
搜索一下,找到相关课件或文库资源 515 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有