In this lecture, we will revisit the principle of work and energy introduced in lecture D7 for particle dynamics, and extend it to 2D rigid body dynamics. Kinetic Energy for a 2D Rigid Body We start by recalling the kinetic energy expression for a system of particles derived in lecture D17
In lecture D9, we saw the principle of impulse and momentum applied to particle motion. This principle was of particular importance when the applied forces were functions of time and when interactions between particles occurred over very short times, such as with impact forces. In this lecture, we extend these principles to two dimensional rigid body dynamics. Impulse and Momentum Equations Linear Momentum In lecture D18, we introduced the equations of motion for a two dimensional rigid body. The linear momen- tum for a system of particles is defined
A pendulum is a rigid body suspended from a fixed point (hinge) which is offset with respect to the body's center of mass. If all the mass is assumed to be concentrated at a point, we obtain the idealized simple pendulum. Pendulums have played an important role in the history of dynamics. Galileo identified the pendulum as the first example of synchronous motion, which led to the first successful clock developed
Section 1 Introduction Section2 Ingestion Section3 Digestion in Mouth Section4 Digestion in Stomach Section5 Digestion in Small Intestine Section6 Digestion in Large Intestine Section7 Absorption
D244BD RIGID BODY DYNAMICS KINETIC EWEGY In echure we derwed am kinenc a susem u dm T= Fere ts the velouty relanve to G. for a nald body we ca wate Uing the vechor nidontklyAxB=Ax