点击切换搜索课件文库搜索结果(92)
文档格式:PDF 文档大小:465.95KB 文档页数:6
应用商业化的流体模拟计算软件-PHOENICS开展了分级机转子中湍流流场的计算模拟工作,对分级机转子的单相三维旋转流场进行计算。转子内流场的分析应用旋转流场的理论,并且通过旋转流场理论来分析讨论数值计算结果
文档格式:PDF 文档大小:432.12KB 文档页数:3
以Ba (NO3)2-TiO2-C6H7O8·H2O为体系,在600℃加热进行低温燃烧合成实验,制得粒度为1.2~.4 μm的四方相BaTiO3陶瓷粉体.结果表明燃烧的均匀程度对燃烧产物的相组成和微观结构有很大的影响.通过热力学分析,提出低温燃烧合成BaTiO3陶瓷粉末的形成机理
文档格式:PDF 文档大小:338.36KB 文档页数:4
以型号为Kynar2801的PVDF-HFP (偏氟乙烯-六氟丙稀共聚物)为基质,制备了掺杂微米TiO2粉体的聚合物锂离子电池用多孔电解质隔膜,并采用SEM、XRD、交流阻抗法以及充放电测试等测试手段研究分析该电解质膜的物理及电化学性能.实验结果表明:掺入质量分数6.5%的微米TiO2聚合物电解质膜的室温离子电导率为1.66×10-3S·cm-1,拉伸强度为2.78MPa;在以掺杂电解质膜为隔膜的锂离子电池中,分别以28,70,140,280mA·g-1的电流密度放电时,正极材料LiCoO2的放电容量分别为140.6,127.48,120.25,99.17mAh·g-1
文档格式:DOC 文档大小:237KB 文档页数:32
实验 1 烧结温度和烧结温度范围的测定 实验 2 陶瓷坯釉应力的测定 实验 3 泥釉料含水率、细度的测定 实验 4 干燥与烧成收缩率的测定 实验 5 泥釉浆比重、粘度、流动性和厚化度(触变性)的测定 实验 6、粉体材料制备 实验 7 陶瓷材料的成型 实验 8 陶瓷材料的烧成 实验 9 永久磁石的制作及性能测试(综合实验) 实验 10 陶瓷釉料配方实验(综合实验)
文档格式:PDF 文档大小:1.22MB 文档页数:12
近年来,在熔盐辅助法制备TiC材料方面已取得一定研究成果,已采用熔盐辅助法制备出不同粒度、形貌各异及纯度不同的TiC粉体、TiC涂层和TiC纤维等。本文在归纳总结熔盐辅助碳热还原法、熔盐辅助电化学法、熔盐辅助金属热还原法、熔盐辅助直接碳化法以及熔盐辅助微波合成法制备TiC材料的工艺、原理、产物纯度、形貌及其优缺点等基础上,对未来在杂质去除、提高TiC纯度、调控TiC形貌等方面的研究进行了展望,期望为高质量TiC材料的制备提供技术参考
文档格式:PPT 文档大小:2.31MB 文档页数:165
第一节 液体搅拌与混合机械设备 第二节 粉体混合机械 第三节 搅拌混合与捏合机械设备 第四节 均质机械设备
文档格式:DOC 文档大小:402KB 文档页数:11
1、概述 水泥土搅拌法是用于加固饱和粘性土地基的一种新方法。它是利用水泥(或石灰)等材料作为固化剂, 通过特制的搅拌机械,在地基深处就地将软土和固化剂(浆液或粉体)强制搅拌,由固化剂和软土间所产 生的一系列物理-化学反应,使软土硬结成具有整体性、水稳定性和一定强度的水泥加固土,从而提高地 基强度和增大变形模量
文档格式:PDF 文档大小:603.67KB 文档页数:6
为了改善涂层的组织和性能,对超音速等离子喷涂技术制备的高铝青铜涂层进行高频感应重熔处理,研究重熔后涂层的微观组织结构特征和界面结合状态.感应重熔前涂层具有层流状组织特点,含有少量氧化渣、孔隙及未完全熔融颗粒,涂层与基体间以机械结合为主.感应重熔能消除未熔颗粒和夹杂,使组织致密、均匀,组织的层流特征弱化,孔隙率有所下降.基体元素和涂层元素相互扩散,在界面形成一条明显的白亮带,呈冶金结合状态,结合牢固,涂层的结合性能有所改善.重熔后扩散带和涂层表面的硬度较高,界面结合强度也由重熔前的25.110提升至83.358 MPa
文档格式:PDF 文档大小:1.37MB 文档页数:5
利用CaCl2为氯源与含锌冶金粉尘的重要组分ZnFe2O4进行反应,并利用扫描电镜(SEM)和能量色散谱仪(EDS)分析了ZnFe2O4粉体与CaCl2反应面和反应产物微观形貌的变化,讨论了ZnFe2O4与CaCl2的反应机理.认为反应过程包括一个固液反应和气体挥发过程.ZnFe2O4颗粒被熔融CaCl2包裹,在固液界面发生氯化反应,生成的ZnCl2溶解在CaCl2液膜中,并在气液界面挥发逸出,而CaFe2O4的产物层不断增大,同时伴随着多个颗粒间的黏结和融合长大
文档格式:PDF 文档大小:1.83MB 文档页数:7
采用一种简便、快速和低温的水热法制备了超级电容器用MnO2微纳米球和微米棒粉体颗粒,并用正交试验和单因素实验对其制备工艺进行了优化。通过X射线衍射、扫描电镜和电化学测试,研究了所得材料的晶体结构、表面形貌和超电容性能.最佳合成工艺条件为:反应温度150℃,KMnO4/MnCl2摩尔比2.5:1.0,反应时间3h,填充率40%。该工艺下所制的样品为α-MnO2,且呈现出空心、表面多孔的微纳米球和微米棒形貌.微纳米球的直径约为0.2-0.8μm,微米棒的直径约为30nm、长约为5μm.在此条件下,所得样品在100、150、200、250和300mA·g-1电流密度下,第5次的放电比电容分别为255、170、133、105和88F·g-1,其等效串联电阻和电荷转移电阻分别为0.37和0.40Ω
首页上页23456789下页末页
热门关键字
搜索一下,找到相关课件或文库资源 92 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有