点击切换搜索课件文库搜索结果(75)
文档格式:PDF 文档大小:334.98KB 文档页数:4
采用辊轧工艺,制成了素坯密度较高的氧化锆增韧氧化铝复合陶瓷,并对其性能和结构分别进行了研究。利用多种粒径的粉体混合、多种增韧方式来设计复相陶瓷的显微结构,得到了最佳配比和最佳烧结工艺条件下的ZrO2/nmAl2O3/μmAl2O3复相陶瓷。此陶瓷在1550℃下烧结,得到优良的抗弯强度和断裂韧性
文档格式:PDF 文档大小:376.39KB 文档页数:3
结合颜料的特性分析阐述了超细煤系煅烧高岭土粉体作为钛白代用品基体的原因.结果表明,超细煤系煅烧高岭土的高白度、高折光指数、较强遮盖力、低吸油量等物化性能是将其作为钛白代用品基体的原因;另外颗粒表面吸附能力的增强以及表面电位有利于其与表面改性药剂作用
文档格式:PDF 文档大小:465.95KB 文档页数:6
应用商业化的流体模拟计算软件-PHOENICS开展了分级机转子中湍流流场的计算模拟工作,对分级机转子的单相三维旋转流场进行计算。转子内流场的分析应用旋转流场的理论,并且通过旋转流场理论来分析讨论数值计算结果
文档格式:PDF 文档大小:681.64KB 文档页数:6
以水玻璃为硅源,甲酰胺为催化剂,乙二醇为干燥控制化学添加剂(DCCA),采用溶胶-凝胶法常压下干燥制备了硅石气凝胶粉体.研究发现:微过量的甲酰胺,有利于高孔隙率气凝胶的合成;过量的乙二醇的引入不利于低密度气凝胶的形成;pH值对合成气凝胶的性质也有较大的影响.经二甲基二乙氧基硅烷(DMDEOS)表面改性处理后的气凝胶表现出了很好的疏水性能.采用傅里叶变换红外分析(FTIR)、热重分析(TG)、示差扫描量热分析(DSC)等对疏水型气凝胶的结构和性能进行了研究.
文档格式:PDF 文档大小:432.12KB 文档页数:3
以Ba (NO3)2-TiO2-C6H7O8·H2O为体系,在600℃加热进行低温燃烧合成实验,制得粒度为1.2~.4 μm的四方相BaTiO3陶瓷粉体.结果表明燃烧的均匀程度对燃烧产物的相组成和微观结构有很大的影响.通过热力学分析,提出低温燃烧合成BaTiO3陶瓷粉末的形成机理
文档格式:PDF 文档大小:338.36KB 文档页数:4
以型号为Kynar2801的PVDF-HFP (偏氟乙烯-六氟丙稀共聚物)为基质,制备了掺杂微米TiO2粉体的聚合物锂离子电池用多孔电解质隔膜,并采用SEM、XRD、交流阻抗法以及充放电测试等测试手段研究分析该电解质膜的物理及电化学性能.实验结果表明:掺入质量分数6.5%的微米TiO2聚合物电解质膜的室温离子电导率为1.66×10-3S·cm-1,拉伸强度为2.78MPa;在以掺杂电解质膜为隔膜的锂离子电池中,分别以28,70,140,280mA·g-1的电流密度放电时,正极材料LiCoO2的放电容量分别为140.6,127.48,120.25,99.17mAh·g-1
文档格式:PDF 文档大小:616.43KB 文档页数:5
以振动球磨方式混合Ti-Mo粉体,采用凝胶注模成形制备了多孔Ti-7.5Mo合金制品,并利用扫描电子显微镜、X射线衍射和力学性能试验分别对其显微结构和力学性能进行了测试和分析,研究了预混液单体质量分数和浆料固相含量对其孔隙性能和力学性能的影响.结果表明,与纯Ti粉末相比,添加质量分数为7.5%的Mo混合粉末浆料的流变特性较好,所得合金由分布均匀的α-Ti基体和β-Ti组成,其孔隙率为39.15%~45.97%,孔径为5~98μm.与凝胶注模多孔纯钛相比,多孔Ti-7.5Mo合金的生物力学性能更加优异,适合作为医用植入材料
文档格式:DOC 文档大小:402KB 文档页数:11
1、概述 水泥土搅拌法是用于加固饱和粘性土地基的一种新方法。它是利用水泥(或石灰)等材料作为固化剂, 通过特制的搅拌机械,在地基深处就地将软土和固化剂(浆液或粉体)强制搅拌,由固化剂和软土间所产 生的一系列物理-化学反应,使软土硬结成具有整体性、水稳定性和一定强度的水泥加固土,从而提高地 基强度和增大变形模量
文档格式:PDF 文档大小:1.37MB 文档页数:5
利用CaCl2为氯源与含锌冶金粉尘的重要组分ZnFe2O4进行反应,并利用扫描电镜(SEM)和能量色散谱仪(EDS)分析了ZnFe2O4粉体与CaCl2反应面和反应产物微观形貌的变化,讨论了ZnFe2O4与CaCl2的反应机理.认为反应过程包括一个固液反应和气体挥发过程.ZnFe2O4颗粒被熔融CaCl2包裹,在固液界面发生氯化反应,生成的ZnCl2溶解在CaCl2液膜中,并在气液界面挥发逸出,而CaFe2O4的产物层不断增大,同时伴随着多个颗粒间的黏结和融合长大
文档格式:PDF 文档大小:1.83MB 文档页数:7
采用一种简便、快速和低温的水热法制备了超级电容器用MnO2微纳米球和微米棒粉体颗粒,并用正交试验和单因素实验对其制备工艺进行了优化。通过X射线衍射、扫描电镜和电化学测试,研究了所得材料的晶体结构、表面形貌和超电容性能.最佳合成工艺条件为:反应温度150℃,KMnO4/MnCl2摩尔比2.5:1.0,反应时间3h,填充率40%。该工艺下所制的样品为α-MnO2,且呈现出空心、表面多孔的微纳米球和微米棒形貌.微纳米球的直径约为0.2-0.8μm,微米棒的直径约为30nm、长约为5μm.在此条件下,所得样品在100、150、200、250和300mA·g-1电流密度下,第5次的放电比电容分别为255、170、133、105和88F·g-1,其等效串联电阻和电荷转移电阻分别为0.37和0.40Ω
上页12345678下页
热门关键字
搜索一下,找到相关课件或文库资源 75 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有