点击切换搜索课件文库搜索结果(685)
文档格式:PPT 文档大小:809KB 文档页数:10
已知R.V. X的分布,及Y=g(X),y=g(x)为连续函数,如何求R.V. Y=g(X)的分布? 一、X是离散型R.V.情形此时Y=g(X)必为离散型R.V.为求R.V. Y的分布律,(1)搞清Y=g(X)的所有取值;(2)求Y取每个值的概率
文档格式:PPT 文档大小:409.5KB 文档页数:17
一 、古典概型 若一个试验满足 (1)只有有限个基本事件; (2)这些基本事件的发生是等可能的;
文档格式:PPT 文档大小:943.5KB 文档页数:23
设函数y=f(x)在a,b)内图形如下图: y=f(x)/ 在:处的函数值()比它附近各点的函数值都要小 而在处的函数值()比它附近各点的函数值都要大; 但它们又不是整个定义区间上的最小、最大者,而且 A将这样的点称为极小值点、极大值点
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例子来介绍
文档格式:PPT 文档大小:430KB 文档页数:17
问题:根据极限的定义,只能验证某个常数A 是否为某个函数f(x的极限,而不能求出函数f(x的 极限.为了解决极限的计算问题,下面介绍极限的运 算法则;并利用这些法则和§2.1及22中的某些结 论来求函数极限
文档格式:PPT 文档大小:700.5KB 文档页数:23
数列极限是考察数列在n→∞这一过程中的变化 总趋势(即有无极限).而对于函数y=f(x),当考察它的 变化总趋势时,因自变量的连续变化过程有许多情况, 如x→∞,x→-0,x→0,x→x,x-xx等
文档格式:PPT 文档大小:455KB 文档页数:16
本节先介绍极限存在准则利用它们来导出两个重 要极限. 一、极限存在准则 准则I(夹逼定理)若Vx∈U(x,)(或|x>M), 均有g(x)≤f(x)≤h(x)且limg(x)=limh(x)=A, 则有limf(x)=A
文档格式:PPT 文档大小:561KB 文档页数:16
2.1数列的极限 一、数列 定义1按一定顺序排列的一列数12…叫做一个数列,数列中的每一个数叫数列的项,第n项an叫数列的一般项或通项.简记为{an}数列也可称作整标函数
文档格式:PPT 文档大小:679.5KB 文档页数:21
3.1导数的概念 一、引例 1变速直线运动的瞬时速度 匀速直线运动的(瞬时)速度设作变速直线运动的质点P(运动轨迹为s=s(t)从to时刻到to+△t时刻,动点P在△t这段时间内经过的路程为
文档格式:PPT 文档大小:296KB 文档页数:11
讨论导数,即讨论lm4的极限是否存在,而不 △x→0△v 是研究改变量本身.实践中,我们关心的是:当 自变量x有微小改变量x时,函数y相应的改变量 y与Ax有何关系,大小又如何 先看一个实际例子:正方形的边长由x变到x+Ax 时,其面积改变多少?由S=x2知:
首页上页4849505152535455下页末页
热门关键字
搜索一下,找到相关课件或文库资源 685 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有