习题与补充题 习题 1.证明曲面r= acos(pcos, bsin(pcos,csinθ)是椭球面,并求其法向量,切平 面及曲线坐标。 求圆锥的参数方程和它的切平面 3.证明曲面 (1)r=u.v, 是椭圆抛物面; (2)r=(a(u+v),b(u-V,2vu)是双曲抛物面 4.求题3中各曲面的法向量和切平面。 5.求旋转曲面r=( ucos, using,f(u)(0
文档格式:DOC 文档大小:425.5KB 文档页数:7
习题与补充题 习题 1.证明a(t)是常向量的充要条件是a(t)=0 2.设是常数,a是常向量,证明 (1) d (or(t)= (2)((t)a)=t)a0 3.下列等式成立吗?为什么? (1)r2= (3)F= dt 4.设向量函数a(t)满足aa=0,axa,证明a(t)是常向量。 5.证明r()=(2t-1,t2-2,-t2+4t)为共面向量函数。 6.证明:F(t)=at3+bt2+ct,为共面向量函数的充要条件是abc)=0 7.试证明