点击切换搜索课件文库搜索结果(901)
文档格式:PDF 文档大小:206.83KB 文档页数:7
Handout 7: Lag and PI compensation Eric Feron Lag Compensation goals: Raise gain at low frequencies while leaving rossover &z higher frequencies untouched b≥0. When b=0: Add an integrator in the loop Typical lag Bode Plot
文档格式:PDF 文档大小:75.08KB 文档页数:4
Handout 4: Root-Locus Review Eric Feron Feb17,2004 Summary of Guidelines for plotting a root-locus 1. Mark Poles X and Zeros O 2. Draw the locus on the real axis to the left of an odd number of real poles plus zeros
文档格式:PDF 文档大小:209.15KB 文档页数:4
Handout 6: Proportional Compensation Eric Feron Feb25,2004 Plant under study: 1/10 G(s)=(s+1)(s/10+1)2 Compensation Scheme: We adjust the gain K in the feedback loop (draw the feedback loop below)
文档格式:PDF 文档大小:64.75KB 文档页数:8
Handout 2: Gain and Phase margins Eric Feron Feb6,2004 Nyquist plots and Cauchy's principle Let H(s) be a transfer function. eg H(s)= s2+s+1 (s+1)(s+3) Evaluate H on a contour in the s-plane. (your plots here)
文档格式:PDF 文档大小:91.6KB 文档页数:6
Partially Observable Markov Decision Processes Part II Additional reading: Anthony R. Cassandra. Exact and Approximate Algorithms for Partially Observable Markov Decision Processes. Ph. D. Thesis. Brown University Department of Computer Science, Providence, RI
文档格式:PDF 文档大小:2.64MB 文档页数:21
Defining problem and model so| ution: Minimizing localization error Comb imize gain in explored map bined Information Utilities Integrated Adaptive Information-based Exploration Algorithm
文档格式:PDF 文档大小:22.37KB 文档页数:3
Vision-based SLAM Mobile Robot Localization And Mapping With Uncertainty using Scale-Invariant Visual Landmarks -e,lowe, Little Vikash Mansinghka Spren Riisgaard Outline
文档格式:PDF 文档大小:592.18KB 文档页数:90
Outline Model-based programming The need for model-based reactive planning The Burton model-based reactive planner Artificial Intelligence Space Systems
文档格式:PDF 文档大小:70.87KB 文档页数:8
Massachusetts Institute of Technology 16.412/6.834 Cognitive Robotics Distributed: Monday, 3/31/04 Objective The purpose of the following handout is to walk you step by step through the execution of the FF planning algorithm, on a simple example. The FF algorithm is presented in the paper:
文档格式:PDF 文档大小:240.72KB 文档页数:6
Cognitive Robotics Outline Temporal Action Graph Walksat: Stochastic Local Search Better Neighbor Relaxed Plan A. Gerevini, A. Saetti, I. Serina \Planning through Stochastic Local Search and Temporal Action Graphs\, to appear in Journal of Artificial Intelligence
首页上页5354555657585960下页末页
热门关键字
搜索一下,找到相关课件或文库资源 901 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有