点击切换搜索课件文库搜索结果(5712)
文档格式:PDF 文档大小:4.6MB 文档页数:142
1总则 2术语 3生物安全实验室的分级、分类和技术指标 3.1生物安全实验室的分级 3.2生物安全实验室的分类 3.3生物安全实验室的技术指标 4建筑、装修和结构 4.1建筑要求 4.2装修要求 4.3结构要求 5空调、通风和净化 5.1一般规定 5.2送风系统 5.3排风系统 5.4气流组织 5.5空调净化系统的部件与材料 6给水排水与气体供应 6 1一般规定 6.2给水 63排水 64气体供应 7电气 71配电 7.2照明 7.3自动控制二 7.4安全防范 7.5通信 8消防 9施工要求 9.1一般规定 9.2建筑装修 9.3空调净化 9.4实验室设备 10检测和验收 10.1工程检测 10.2生物安全设备的现场检测 10, 3工程验收 附录A生物安全实验室检测记录用表 附录B生物安全设备现场检测记录用表 附录C生物安全实验室工程验收评价项目 附录D高效过滤器现场效率法检漏 本规范用词说明 引用标准名录 附:条文说明
文档格式:PDF 文档大小:1.36MB 文档页数:11
利用扫描电镜分析了自耗电极和电渣重熔钢中夹杂物的特征,结合热力学计算,分析了氧硫复合夹杂物在电渣重熔过程中的转变机理。结果表明,电渣重熔采用气氛保护结合脱氧操作可以将自耗电极全氧质量分数由0.0017%降低至0.0008%。电渣重熔之后钢中小于3 μm夹杂物的比例显著增加。自耗电极中的夹杂物为CaS与含质量分数3%和11%左右MgO的CaO–Al2O3–SiO2–MgO结合的两类复合夹杂物。电渣过程未被去除的氧化物夹杂中的SiO2被钢液中酸溶铝还原,保留至电渣锭中。电渣锭中含约1%MgO和2%SiO2且成分均匀的CaO–Al2O3–SiO2–MgO是在电渣过程中新生的夹杂物。自耗电极中的CaS通过分解为钢液中溶解Ca和S,以及通过与液态氧化物夹杂中Al2O3反应的途径在电渣过程被去除。电渣锭中低熔点氧化物夹杂周围环状CaS是钢液凝固过程中溶解S、酸溶铝Al与氧化物夹杂中CaO的反应产物,高熔点氧化物夹杂周围环状CaS是钢液凝固过程中Ca和S偏析后反应新生的夹杂物。复合夹杂物中补丁状CaS是在电渣重熔钢液冷却过程中由复合夹杂物熔体中析出的
文档格式:PDF 文档大小:187.3KB 文档页数:8
1、掌握检测仪表的组成、作用和描述仪表性能的参数。 2、了解测量误差的基本概念和误差分析方法。 3、掌握温度检测的基本方法和仪表,特别是热电偶和热电阻测温。 4、掌握流量检测的基本方法和仪表,特别是差压式、电磁和超声波流量检测。 5、掌握压力检测的基本方法和仪表,特别是弹性式、电阻式和电容式检测方法。 6、掌握物位检测的基本方法和仪表,特别是浮力式、差压式、电容式和超声波方法。 7、了解检测仪表的选型、安装和校验。 8、掌握变送器的工作原理和零点及量程迁移。 9、掌握成分参数检测的基本方法。 10、掌握热导式分析仪表的工作原理。 11、掌握热磁式分析仪表的工作原理。 12、了解色谱分析方法的基本原理
文档格式:PDF 文档大小:1.09MB 文档页数:7
采用挤出式3D打印技术制备锂离子电池电极,选取三元镍钴锰酸锂(LiNi0.5Co0.2Mn0.3O2)作为正极活性材料,以去离子水、羟乙基纤维素和其他添加剂为溶剂来制备性能稳定且适合3D打印技术的锂离子电池正极墨水,利用流变仪、X射线衍射仪、电池测试仪、ANSYS模拟等探究了增稠剂种类和含量、墨水黏度、打印工艺等对墨水流变性质和可打印性能的影响。结果表明:选取羟乙基纤维素/羟丙基纤维素质量比为1∶1混合且质量分数为3%时,所制备的墨水黏度为20.26 Pa·s,此时墨水具有较好的流变性,打印过程出墨均匀,打印电极光滑平整,满足后期墨水的可打印性要求,经模拟分析,墨水黏度对墨水流动性影响明显;电极材料经超声分散、打印、烧结等过程后未造成原有晶体结构的改变;电极首次充放电容量分别为226.5和119.4 mA·h·g?1,经过20次循环后,电池充放电容量的变化率减小并趋于稳定,3D打印电极表现出良好的循环稳定性
文档格式:PDF 文档大小:1.18MB 文档页数:155
1 感知机存在的一个问题 2 线性可分 SVM SVM 的种类 函数间隔和几何间隔 学习的原始最优化问 题 凸优化问题 线性可分 SVM 学习算 法—最大间隔法 支持向量与间隔边界 拉格朗日对偶性 KKT 条件 线性可分 SVM 学习的 对偶算法 3 线性不可分 SVM 线性 SVM 学习的对偶 算法 线性 SVM 学习算法 线性不可分时的 SV 合页损失函数 4 非线性 SVM 与核函数 希尔伯特空间 核函数的定义 核函数的选取 核技巧在 SVM 中的应 用 非线性 SVM 算法 5 序列最小最优化算法 SMO 算法的基本思路 两变量二次规划的求 解方法 两个变量的选择方法
文档格式:PDF 文档大小:722.13KB 文档页数:9
利用同步热跟踪原理, 提供一种测定微量气液反应热的研究方法.通过程序控制容器外壳温度与内部溶液同步升温, 减小温度梯度, 形成“热屏障”, 阻止溶液以热传导、对流、辐射的形式与外界环境进行热交换, 获得动态绝热环境, 提高微量气液反应热直接测量的精度, 减少样品用量, 无需热补偿.采用MEA (乙醇胺) 与MDEA (N-甲基二乙醇胺) 两类弱碱吸收液, 容积为15 mL, 分别在10%、20%、30%、40%和50%质量分数下, 测定吸收CO2的反应热.实验表明: 同步热跟踪法测量更为准确; 随溶液浓度的增加, MEA反应热先降低后升高, MDEA反应热逐渐降低; 在质量分数为20%~40%时, MEA、MDEA质量分数对反应热的影响不显著; 反应放热形成的升温曲线出现“下凹”现象
文档格式:PDF 文档大小:1MB 文档页数:6
采用Al-KBF4-K2ZrF6组元通过熔体直接反应法制备了ZrB2颗粒增强铝基复合材料,优化的初始合成温度范围为850~870℃,反应时间为25~30 min.扫描电镜观察结果显示:ZrB2颗粒尺寸为300~400 nm,颗粒间距200 nm左右,有团簇现象,团簇体尺寸为30~40μm.当颗粒理论体积分数为3%时,单位熔体体积内ZrB2颗粒形核数量为6.68×1017 m-3,平均线长大速率为47.3nm·s-1.分析团簇原因认为:大量细小高熔点ZrB2增加了熔体黏度,颗粒扩散阻力大,限制了颗粒迁移位移;ZrB2颗粒因密度大具有较高的沉降速率.原位反应过程分析表明:通过Al3Zr-AlB2间的分子化合及[Zr]-[B]间的原子化合得到ZrB2颗粒,是高温稳定相
文档格式:PDF 文档大小:2.07MB 文档页数:341
食品质量与安全专业 1 食品质量与安全学科基础 《食品质量与安全导论》 《机械工程基础》 2 食品质量与安全专业必修 《食品工程原理》 《食品工程原理实验》 《食品微生物学》 《食品微生物学实验》 《食品化学》 《食品化学实验》 《基因工程》 《基因工程实验》 《食品毒理学》 《食品营养学》 《食品工艺学》 《食品添加剂》 《仪器分析》 《仪器分析实验》 《食品分析》 《食品分析实验》 《食品安全学》 《食品安全学实验》 《食品标准与法规》 3 食品质量与安全专业选修 《文献检索与利用》 《食品试验设计与统计分析》 《物理化学》 《物理化学实验》 《人体解剖生理学》 《数据可视化分析》 《食品经济学》 《食品包装学》 《食品感官评定》 《食品免疫学》 《食品安全风险评估》 《食品机械与设备》 《食品原料学》 《食品掺伪检验》 《食品掺伪检验实验》 《动植物检验检疫学》 《食品工厂设计》 《专业外语》 4食品质量与安全专业实践实训 《专业 PBL 训练与前沿讲座》 《金工实习》 《认识实习》 《专业综合实验》 《毕业实习》 《毕业设计(论文)》
文档格式:PDF 文档大小:6.98MB 文档页数:6
采用真空熔炼法, 经急冷和缓冷两种不同冷却条件制备了Te系化合物TeAsGeSi合金粉体.通过X射线衍射分析, 急冷工艺制备粉体呈非晶态, 缓冷工艺制备的粉体呈晶态, 结晶主相为R-3m空间群的As2GeTe4; 差热-热重分析显示, 升温至350℃时缓冷粉体As2GeTe4成分熔融, 400℃时两种粉体均开始快速失重, 为避免制备过程中发生材料熔融及挥发损失, 确定烧结温度不超过340℃.采用真空热压法制备TeAsGeSi合金靶材, 将两种粉体分别升温至340℃, 加压20 MPa, 保温2 h制备出两种靶材, 其中缓冷粉体制备的靶材致密度高, 为5. 46 g·cm-3, 达混合理论密度的99. 5%, 形貌表征显示此靶材表面平整, 孔洞少, 元素分布均匀
文档格式:PDF 文档大小:1MB 文档页数:9
利用钢渣制备陶瓷材料是钢渣资源化大宗利用的一条新途径.开展不同烧结气氛对钢渣陶瓷影响规律的研究,对推动钢渣陶瓷技术的应用具有重要意义.以20%钢渣和80%黏土为原料,分别在空气和氮气气氛下,制备了钢渣陶瓷样品,分析了其晶相转变和性能变化规律,并定量研究了氧分压对钢渣陶瓷中铁元素价态转变的影响机理.研究表明,在空气条件下烧结时,原料中的Fe2+发生氧化形成赤铁矿相,烧结样品物理性能要优于在氮气条件下烧结的样品,其抗压强度和吸水率为310 MPa和3.7%;而在氮气条件下烧结时,Fe2+形成铁铝尖晶石和铁辉石,烧结样品中形成的气孔大小和数量要大于和多于空气条件下的样品,这是导致其力学性能较差的一个主要原因.铁元素赋存晶相转变的氧分压临界范围为0.5%~0.75%:当分压低于0.5%时,可以获得以铁铝尖晶石和铁辉石为主的黑色或褐色陶瓷样品;当氧分压超过0.75%时,Fe2+开始发生氧化并形成Fe3+,逐渐形成赤铁矿并带来样品颜色为褐黄色或褐红色.增加烧结环境中氧气分压量是减少钢渣陶瓷产品黑心的一个重要手段
首页上页565566567568569570571572下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5712 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有