提出基于普通变尺度和周期势自适应随机共振理论,检测噪声背景下轴承滚动体的故障特征.在具体实施过程中,首先用普通变尺度的方法满足随机共振中小参数的条件,然后用随机权重粒子群优化算法作为自适应随机共振参数寻优的优化算法,同时用改进的信噪比作为评价指标.噪声背景下含轴承滚动体故障的实验信号经过普通变尺度下的自适应随机共振处理和优化后,微弱的故障特征可以有效的提取出来.将普通变尺度下的双稳态自适应随机共振和周期势自适应随机共振进行了对比,结果表明周期势自适应随机共振比双稳态自适应随机共振能进一步提高信噪比,并且比双稳态自适应随机共振迭代次数少,用时短.这说明提出的基于普通变尺度和周期势系统自适应随机共振的轴承滚动体故障诊断方法具有优越性,尤其是在工程实际中,故障监测所需的数据量大,计算时间长,如能较早的预警,可以提高诊断效率并减少不必要的损失.因此,这种轴承滚动体故障诊断方法对提高机械设备故障诊断效率具有参考价值