点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:1.09MB 文档页数:4
1.设z=u2-v2,而u=x+y,v=x-y,求 2.设z=u2m,而u=x,v=3x-2y,求 3.设z=ex-2y,而x=sint,y=,求 4.设zarcsinr-y),而x+3t,y=4t2,求
文档格式:DOC 文档大小:247.5KB 文档页数:6
1.已知前提:(1)如果x与y是同班同学,则x的老师也是y的老师;(2)小李和小 张是同班同学;(3)王先生是小李的老师,运用自然演绎推理证明:王先生也是小张 的老师 证明:首先定义谓词: Teacher(x, y) x是y的老师 Classmates(x, y) x和y是同班同学 则已知的前提可以符号化为 (1)VxVyV=Teacher(x, y)A Classmates (, =)>Teacher(x, =))
文档格式:DOC 文档大小:423KB 文档页数:8
微分学讨论题 1.设f(x,y)在点M(x0,y0)可微 af (xo, yo) af(xo, yo) =1,则∫(x,y)在点M(x0,y)的微分是( 2.已知(x+ay)x+yzy 为某个二元函数的全微分,则a=() x+ 3.设函数二=f(x,y)是由方程xz+x2+y2+2=√2确定的在点(0-)求止 (dx-√2dy) 4.设∫(x,y,z)=xy2+yz2+xx2,求 a2f(0,0,1)a2f(10.2)a2f(0,-10)03f(2,0,1) 2.2.0.0) 5.求下列函数在指定点的全微分
文档格式:DOC 文档大小:389.5KB 文档页数:7
第六章常微分方程 附加条件 y(a)=yu,y(b)=y2 称为边值条件( boundary condition) 满足微分方程,并且适合定解条件的解称为微分方程的特解 (special solution) 微分方程的存在唯一性定理 存在唯一性定理:对一阶初值问题:=f(xy ,若二元函数 y(x0) f(x,y)在矩形D={(x,y):x-x0Ay-y0B}连续, 且偏导数(xy存在并有界则存在正数h,使得上述初值问题 在区间[x。-h,x+h上存在有唯一的解 证明思路:
文档格式:PPT 文档大小:42KB 文档页数:1
已知y=x+a2x2+a3x3+ax4+…, y=2a2x+3.2a3x+4.3ax2++n(n-1)anxn-2+ 把y及y\代入方程y\-xy=0,得 2a2+3.2a3x+4.3ax2++n(n-1)axn-2+ -x(x+a2x2+a3x3+ax4++axn+…)=0, 即2a,+3.2a2x+(43a4-1)x2+(5.4a-a)x3+ (65a6-a3)x++(n+2)(n+1)an+2an-n+=0
文档格式:DOC 文档大小:384KB 文档页数:8
1:若方程y+p(x)y=0的一个特解为y=cos2x则该方程满足初值条件y(0)=2的 特解为() A cos 2x+2 B cos 2x+1 C2 coS x cos 2X 答案D 解:将y=cos2x代入方程求出函数p(x)再求解方程得到正确答案为D.也可以作 如下分析一阶线性齐次方程 y+p(x)y=0任意两个解只差一个常数因子所以A,B,C三个选项都不是该方程的解 2微分方程“卫
文档格式:PPT 文档大小:433.5KB 文档页数:12
第四章随机变量的数字特征 4-4协方差 1、定义 COV(, Y)=E(X-EX)(Y-EY)=EXY-EXEY 为随机变量X,Y的协方差.而COV(X,X)=DX COV(X,Y) PDxDy为随机变量XY的相关系数。 Pxy是一个无量纲的量;若pxy=0, 称XY不相关此时COVX,Y)=0 定理:若X,Y独立,则X,Y不相关
文档格式:PPT 文档大小:597.5KB 文档页数:32
第三章随机变量及其分布 3-4随机变量的独立性 设(X,Y)是二维随机变量,其联合分布函数为 F(x,y),又随机变量X的分布函数为F(x) 随机变量Y的分布函数为F(y)如果对于任意 的x,y,有 F(x, y)=Fx(x).Frl 则称X,Y是相互独立的随机变量
文档格式:DOC 文档大小:395KB 文档页数:4
设D是以点A,1),B(-1),C(-1,-1)的三角形,则 √x2+3y2+1)si(xy)+2dy=(A)(中) (A)4.(B)2.(C)1.(D)0 2.设球体x2+y2+z2≤2az(a>0)中每点的质量密度与该点 到坐标原点的距离的平方成反比,则该球体的质量M与质心x坐标X为 (中) (A)M=2ka, X X=-a (C)M=2kma, x=la. (D) M=kma, x=Ia 3.设D={(x,y)∈R2x2+y221>0,f(x,y)在D上连续,在D内可微, f(0,0)=1,D的正向边界为C1。若f(x,y)在D上满足方程 afaf 1 ∫(x,y)
文档格式:DOC 文档大小:2.45MB 文档页数:49
一、区域 1.邻域 设o(x,yo)是xOy平面上的一个点,δ是某一正数。与点Po(x,yo)距离小于δ的 点p(x,y)的全体,称为点P的邻域,记为U(P,),即 U(,)={P0为半径的圆内部 的点P(x,y)的全体
首页上页345678910下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有