点击切换搜索课件文库搜索结果(665)
文档格式:PPT 文档大小:286KB 文档页数:17
一、向量范数 定义1.对于n维向量空间R”中任意一个向量x, 若存在唯一一个实数∈R与x对应,且满足 (1)(正定性)≥0,且Vx∈,=0x=0; (2)(齐次性)axa,ver,a∈R (3)(三角不等式)x+y,Vx,y∈r\ 则称为向量x的范数
文档格式:PDF 文档大小:310.9KB 文档页数:20
In this chapter, st ability and performance for multivariable systems with uncertainty will be considered. Consider a general multivariable system as depicted in Figure 5.1. All signals will in general be vectors, and G() and K(s) will be transfer matrices. d(s) is an output distur- bance signal and n() represents
文档格式:PDF 文档大小:179.79KB 文档页数:13
accelerations account for non-central forces(drag, thrust, etc. X-axis in zenith, y-axis in frames velocity, and z-axis in transverse directions 8 Free orbit solution where 'A and 'B' are lengths and'a andB are phase angles
文档格式:PPT 文档大小:369.5KB 文档页数:6
确定多项式P(x)=an+a1x++anxn,对于一组数 m 据(x,y(i1,m使得=P(x)-y2达到极小, i=1 这里n<
文档格式:PDF 文档大小:238.68KB 文档页数:9
一、选择题(共5题25分) 1.5分(1402)1402 在N个NO分子组成的晶体中,每个分子都有两种可能的排列方式,即NO和ON,也可将晶体视为NO和ON的混合物,在0K时该体系的熵值:() (A)S=0 (B)So= (C)=Nkin2 (D)So=2kInN
文档格式:PDF 文档大小:120.15KB 文档页数:7
高能物理可观测量的计算公式: A=[+, 8K(s) (A,.) 在微扰计算和事例产生器过程中,在相空间中随机产生末态 出射粒子的四动量常常会出现困难。假定对于n粒子末态,它的 洛伦兹不变四动量记为P1Pn,对应的质量为mmn,则其洛仑 兹不变的相空间体积元表示为 d)=(2)no)(p) i=1=1(2元) 相空间体积元可按如下公式因子化
文档格式:PPT 文档大小:422KB 文档页数:14
一、多项式的概念 中学多项式的定义:n个单项式(不含加法或减 法运算的整式)的代数和叫多项式。 例:4a+3b,3x2+2x+1,y- 在多项式中,每个单项式叫做多项式的项。这是 形式表达式。 后来又把多项式定义为R上的函数:
文档格式:DOC 文档大小:57KB 文档页数:2
3.2.5行列式的按任意列展开和特殊矩阵的行列式 1、行列式的按任意行(列)展开 定义命A=(-1)M,称为a的代数余子式
文档格式:PDF 文档大小:256.18KB 文档页数:15
Recursion-breaking an object down into smaller objects of the same typeis a ma- jor theme in mathematics and computer science. For example, in an induction proof we establish the truth of a statement()from the truth of the statement P(n-1). In pro- gramming, a recursive algorithm solves a problem by applying itself to smaller instances
文档格式:PDF 文档大小:224.79KB 文档页数:11
1 The Number-Picking Game Here is a game that you and I could play that reveals a strange property of expectation. 3, First, you think of a probability density function on the natural numbers. Your distri- bution can be absolutely anything you like. For example, you might choose a uniform distribution on 1, 2, ... 6, like the outcome of a fair die roll. Or you might choose a bi- probability, provided that,...,n. You can even give every natural number a non-zero nomial distribution on 0, 1 he sum of all probabilities is 1
首页上页5758596061626364下页末页
热门关键字
搜索一下,找到相关课件或文库资源 665 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有