点击切换搜索课件文库搜索结果(800)
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
文档格式:DOC 文档大小:111KB 文档页数:2
设E1,E2,…,E是线性空间V的一组基,在这组基下,V中每个向量都有确定 的坐标,而向量的坐标可以看成P元素,因此向量与它的坐标之间的对应实质 上就是V到P的一个映射.显然这个映射是单射与满射,换句话说,坐标给出了 线性空间V与P的一个双射.这个对应的重要性表现在它与运算的关系上
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包 含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用 小块矩阵表示如下: A1A12… A=4424
文档格式:PPT 文档大小:209.5KB 文档页数:26
1.理解两类曲线和曲面积分的概念,了解两类积分的性质以及两类积分的关系。 2.掌握计算两类曲线、曲面积分的方法。 3.掌握格林公式并会运用平面曲线积分与路径无关的条件。 4.了解高斯公式,并会用高斯公式求曲面积分。 5.会用曲线积分和曲面积分求一些几何量与物理量(弧长﹑质量﹑重心﹑转动惯量﹑引力、功和流量等)
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且
文档格式:PPT 文档大小:812.5KB 文档页数:17
一、对应与变换 1.集合之间的对应(关系、映射) 2.对应的乘积(复合) 定义0.6.设f为集合A到B的一个对应,g为集合B到C的一个对应.则由此可确定集合A到C的一个对应h,称h为f与g的乘积.记作
文档格式:PDF 文档大小:325.65KB 文档页数:61
习题课 本章主要内容: 向量及运算 1.向量的定义及向量的坐标表示; 2.向量的基本运算和数乘 3.向量的重要运算:数量积,向量积,混合积
文档格式:DOC 文档大小:51.5KB 文档页数:1
定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法:
文档格式:DOC 文档大小:192KB 文档页数:3
第六章6-2欧氏空间中特殊的线性变换 1.正交变换 设V是n维欧氏空间,A是V内一个线性变换如果对任意a,B∈V都有 (Aa, AB)=(a,B) 则称A是V内的一个正交变换 正交变换的四个等价表述 命题2.1A是n维欧氏空间V内的一个线性变换,则下列命题等价
文档格式:DOC 文档大小:101KB 文档页数:3
λ-矩阵也可以有初等变换 定义3下面的三种变换叫做-矩阵的初等变换: (1)矩阵的两行(列)互换位置; (2)矩阵的某一行(列)乘以非零的常数c; (3)矩阵有某一行(列)加另一行(列)的()倍,φ()是一个多项式
首页上页6566676869707172下页末页
热门关键字
搜索一下,找到相关课件或文库资源 800 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有