点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:687.5KB 文档页数:75
南京大学:《数值计算方法》课程教学资源(PPT课件)第5章 数值积分 5.1 Newton-Cotes求积公式 5.2 复化求积公式 5.3 Romberg求积公式
文档格式:PPT 文档大小:631KB 文档页数:32
一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PDF 文档大小:147.39KB 文档页数:5
《概率论》课程教学资源(教案讲义)第六章 马尔可夫链 6.4 条件概率与乘法公式 6.5 全概公式与逆概公式 6.6 独立性
文档格式:PPT 文档大小:722.5KB 文档页数:22
3.2微积分基本公式 3.2.1原函数和不定积分的概念 3.2.2基本积分表 3.2.3微积分基本公式
文档格式:PPT 文档大小:1.28MB 文档页数:34
1、导数的定义 2、基本导数公式(常数和基本初等函数的导数公式)常、反、对、幂、指、三、双曲—18个公式 3、求导法则
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss 公式是 Green 公式的推广 下面我们 从另一个角度来推广Green 公式。 Green 公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:631KB 文档页数:32
前面我们将 Newton-Lebniz 公式推广到了平面 区域的情况,得到了Green 公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green 公式做进一步推广,这 就是下面将要介绍的Gauss 公式,Gauss 公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss 公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式。 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:DOC 文档大小:41KB 文档页数:2
经济数学基础 第5章不定积分 第四单元积分基本公式 一、学习目标 通过本节课的学习,熟悉积分基本公式. 二、内容讲解 正因为求导与求不定积分互为逆运算,所以导数基本公式和积分基本公式也是互逆的.也就是说,有一个导数公式,反过来就有一个积分公式.先让我们回顾
首页上页4567891011下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有