点击切换搜索课件文库搜索结果(73)
文档格式:PDF 文档大小:648.63KB 文档页数:9
为解决进行PM2.5质量浓度预测中多因素回归模型的不稳定、神经网络模型的过拟合及局部最小等问题,提出应用支持向量机和模糊粒化时间序列相结合的方法,对PM2.5质量浓度未来变化趋势和范围进行预测.根据PM2.5不同季节的日变化周期模式,确定以24 h为周期的粒化窗宽,利用三角型隶属函数对数据样本进行特征提取作为支持向量机的输入,并在k重交叉验证法下采用网格划分寻找出模型的最佳参数.以2013年3月—2014年2月北京市海淀区万柳监测点四个季节PM2.5的1 h质量浓度监测值为样本数据,应用该方法建立PM2.5质量浓度的时间序列预测模型,并在MATLAB平台下应用LIBSVM工具实现计算过程.结果表明,基于模糊粒化时间序列的预测模型,能较好解决PM2.5机理性建模方式下由于影响因素考虑不全而造成的预测结果不稳定,对模糊粒子拟合效果较好
文档格式:PDF 文档大小:6.15MB 文档页数:9
针对高炉炼铁过程的关键工艺指标——铁水硅含量[Si]难以直接在线检测且化验过程滞后的问题,提出一种基于稀疏化鲁棒最小二乘支持向量机(R-S-LS-SVR)与多目标遗传参数优化的铁水[Si]动态软测量建模方法.首先,针对标准最小二乘支持向量机(LS-SVR)的拉格朗日乘子与误差项成正比导致最终解缺少稀疏性的问题,提取样本数据在特征空间映射集的极大无关组来实现训练样本集的稀疏化,降低建模的计算复杂度;其次,标准最小二乘支持向量机的目标函数鲁棒性不足的问题将IGGⅢ加权函数引入稀疏化后的最小二乘支持向量机模型进行鲁棒性改进,得到鲁棒性较强的稀疏化鲁棒最小二乘支持向量机模型;最后,针对常规均方根误差评价模型性能的不足,提出从建模误差与估计趋势评价建模性能的多目标评价指标.在此基础上,利用非支配排序的带有精英策略的多目标遗传算法优化模型参数,从而获得具有最优参数的铁水[Si]在线软测量模型.工业实验及比较分析验证了所提方法的有效性和先进性
文档格式:PPT 文档大小:1.12MB 文档页数:100
§2.1 回归分析概述 (Regression Analysis) 一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数 §2.2 一元线性回归模型的参数估计 (Estimation of Simple Linear Regression Model) 一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 三、参数估计的最大或然法(ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计 §2.3 一元线性回归模型的统计检验 Statistical Test of Simple Linear Regression Model 一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间 §2.4 一元线性回归分析的应用——预测问题 一、Ŷ0是条件均值E(Y|X=X0)或个值的一个无偏估计 二、总体条件均值与个值预测值的置信区间
文档格式:PPT 文档大小:1.3MB 文档页数:97
§2.1 回归分析概述 (Regression Analysis) 一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数 §2.2 一元线性回归模型的基本假设 (Assumptions of Simple Linear Regression Model) 一、关于模型设定的假设 二、关于解释变量的假设 三、关于随机项的假设 §2.3 一元线性回归模型的参数估计 (Estimation of Simple Linear 一、参数的普通最小二乘估计(OLS) 二、参数估计的最大或然法(ML) 三、最小二乘估计量的性质 四、参数估计量的概率分布及随机干扰项方差的估计 §2.4 一元线性回归模型的统计检验 Statistical Test of Simple Linear Regression Model 一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间 §2.5 一元线性回归分析的应用——预测问题 一、预测值条件均值或个值的一个无偏估计 二、总体条件均值与个值预测值的置信区间 §2.6 实例及时间序列问题
文档格式:PPT 文档大小:1.08MB 文档页数:112
§2.1 回归分析概述 一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF) 三、随机扰动项 四、样本回归函数(SRF) §2.2 一元线性回归模型的参数估计 一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 三、参数估计的最大或然法(ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干扰项方差的估计 §2.3 一元线性回归模型的统计检验 一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间 §2.4 一元线性回归分析的应用——预测问题 §2.5 实例:时间序列问题 一、中国居民人均消费模型 二、时间序列问题
文档格式:PDF 文档大小:568.33KB 文档页数:7
多年来,由于对钛矿的无序开采,使得海南岛东部出现大面积的土地荒漠化.采用遥感的手段进行跟踪监测,合理地授予采矿权,组织适当的复垦,是解决当地荒漠化的有效途径.基于不同沙地类型在地表空间结构上的差异,提出将基于地质统计学的影像纹理应用到荒漠化监测中,通过变异函数纹理来加大各种不同类别沙地间的区别,提高样本选择的分离度.结果表明,运用变异函数纹理结合光谱波段的最大似然分类方法能够很好地界定海滩沙地和内陆荒漠地的等级,最高分类精度达到92.4%,证明了基于地质统计学的影像纹理在实现该地区遥感荒漠化监测方面的有效性
文档格式:PDF 文档大小:1.18MB 文档页数:10
热轧支持辊的健康状态在带钢板形质量和轧制稳定性控制中起着关键作用,非线性、强耦合、少样本等特点使得热轧支持辊健康状态的预测复杂,目前各大钢厂仍以定期维护和事后维修为主。本文提出了一种支持辊虚拟健康指数的构建方法以及基于Copula函数的复杂工况健康状态预测模型。首先结合支持辊弯窜辊数据表征支持辊健康状态,再使用K-means聚类方法对支持辊工况进行划分,将各工况下过程数据分别构建Copula预测模型,最后根据实际轧制计划的排布顺序融合各工况模型的预测结果。提出的基于Copula函数的预测模型在某钢厂1780热连轧产线得到应用,结果表明,该模型能够准确有效的按照轧制计划实现支持辊的健康状态预测,以更科学的策略指导支持辊更换维护
文档格式:PDF 文档大小:2.27MB 文档页数:7
在冶金、化工等流程型工业领域,生产中的过程控制参数往往具有高维非线性结构特征.为了解决这类高维复杂数据的异常点检测问题,本文引入了软超球体的概念,采用非线性核函数将原始数据映射到高维的特征空间,并在特征空间中确定软超球体的边界.通过检测待识别样本映射到特征空间的位置信息来判定过程参数的设定值是否为异常点,从而避免出现批量的产品质量问题.以某类汽车用钢为应用实例,对实际生产数据进行检测,证明了所提出的基于软超球体的异常点识别算法对于高维的非线性数据具有良好的检测能力
文档格式:PPT 文档大小:1.08MB 文档页数:131
§3.1 多元线性回归模型 一、多元线性回归模型 二、多元线性回归模型的基本假定 §3.2 多元线性回归模型的估计 一、普通最小二乘估计 *二、最大或然估计 *三、矩估计 四、参数估计量的性质 五、样本容量问题 六、估计实例 §3.3 多元线性回归模型的统计检验 一、拟合优度检验 二、方程的显著性检验(F检验) 三、变量的显著性检验(t检验) 四、参数的置信区间 §3.4 多元线性回归模型的预测 一、E(Y0)的置信区间 二、Y0的置信区间 §3.5 回归模型的其他函数形式 一、模型的类型与变换 二、非线性回归实例 §3.6 受约束回归 一、模型参数的线性约束 二、对回归模型增加或减少解释变量 三、参数的稳定性 *四、非线性约束
文档格式:PDF 文档大小:1.26MB 文档页数:10
随着物联网技术的发展,前端传感器的使用使得低合金钢的海水腐蚀监测成为了现实,从而获得了大量的腐蚀数据。针对传统均值法处理双率腐蚀数据带来的数据信息损失以及建模精度下降问题,提出了一种基于综合指标值(CIV)和改进相关向量回归(IRVR)的双率腐蚀数据处理和建模算法(CIV-IRVR)。首先,通过构建CIV表征输入数据的综合影响并采用天牛须搜索(BAS)算法对其参数进行寻优;然后,建立最优CIV序列与输出数据间的线性回归模型将双率数据转化为建模用的单率数据,能够更多地保留原始数据信息;最后,给出了一种BAS算法优化的具有组合核函数的改进相关向量回归建模方法(IRVR),并建立了针对低合金钢海水腐蚀双率数据的CIV-IRVR预测模型。结果表明:相比于均值方法处理双率腐蚀数据,所提方法将建模样本数量由196提升到了1834;相比于海水腐蚀建模领域常用的人工神经网络(ANN)和支持向量回归(SVR)建模方法,所提模型的平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(CD)分别为1.1914 mV、1.5729 mV以及0.9963,在各项指标上均优于对比算法,说明所提模型不仅减少了信息损失还提高了建模精度,对于双率海水腐蚀数据建模具有一定现实意义
上页12345678下页
热门关键字
搜索一下,找到相关课件或文库资源 73 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有