点击切换搜索课件文库搜索结果(71)
文档格式:PPTX 文档大小:504.74KB 文档页数:182
第八章 研究设计 第九章 观察法 第十章 访谈法 第十一章 问卷调查法 第十二章 测量法 第十三章 实验法 第十四章 质的研究 第十五章 统计数据分析 第十六章 研究报告的撰写
文档格式:DOC 文档大小:106KB 文档页数:22
本章主要描述教育调查的各种分类、设计类型,以及调查的基本过程,着重介绍调查研究的几种具体方法:问卷法、访谈法、经验总结法、预测法和情境法
文档格式:PDF 文档大小:1.04MB 文档页数:7
首先对喷管内流动特性进行了研究,结果表明传统拉瓦尔喷管在喷管内部易形成大量明显的波系结构,抑制了超音速氧气射流的初始冲击效果,而利用特征线设计的曲线拉瓦尔喷管可有效解决该问题。其次,分析了不同供氧流量下,传统拉瓦尔喷管及曲线拉瓦尔喷管在高温条件下的射流马赫数分布、动压及射流卷吸特性。研究结果表明基于特征线法设计的曲线拉瓦尔喷管应用于转炉氧枪喷头时,可延长氧气射流核心段长度,增大氧气射流对熔池的搅拌能力,并提高氧气在熔池内的传质效果
文档格式:DOC 文档大小:233KB 文档页数:9
北师版_八年级下册_数学精品试题_江西专版检测卷_精品专题_14.江西中考特色专题:平行四边形中的设计作图与几何探究问题
文档格式:PDF 文档大小:1.56MB 文档页数:10
针对如何识别无人机的问题,提出了一种基于卷积神经网络的声音识别无人机的方法。首先,对100 m范围内的无人机、鸟和人的声音进行采集、预处理和提取MFCC+GFCC特征值,将其特征参数作为卷积神经网络学习和识别的数据集;然后分别设计了支持向量机和卷积神经网络两种模型对无人机等声音进行识别实验。实验结果表明,运用支持向量机识别无人机的准确率为91.9%,卷积神经网络识别无人机的准确率为96.5%。为了进一步验证设计的卷积神经网络的识别能力,在部分UrbanSound8K数据集上进行测试,准确率达到90%。实验结果表明运用卷积神经网络识别无人机具有可行性,且识别性能优于支持向量机
文档格式:PDF 文档大小:1.83MB 文档页数:7
针对地磁导航方向适配性分析时人工提取的特征主观性较强且难以表达深层的结构性特征的问题,提出一种基于深度卷积神经网络(convolutional neural network,CNN)的地磁导航方向适配性分析方法.首先,利用Gabor滤波器的方向选择特性建立了6个典型方向的适配特征图;然后,设计了卷积神经网络对深层次的方向适配特征进行提取,并通过混和粒子群算法(hybrid particle swarm optimization,HPSO)对卷积神经网络的训练参数进行优选;最后,通过仿真实验对所提方法进行了验证.结果表明,该方法可有效避免复杂的计算以及人工特征提取的盲目性,实现了地磁导航方向适配性分析的自动化,且所提方法的准确率高于传统的BP网络和支持向量机,对地磁导航和航迹规划具有指导意义
文档格式:PDF 文档大小:1.18MB 文档页数:10
为提高热轧换规格首块钢头部卷取温度命中率,采用数据挖掘技术,从历史带钢冷却数据中推断出与实际带钢相匹配的卷取温度模型水冷换热学习系数,并将其应用于模型预设定计算。首先,对冷却特征参数进行识别,按照相对型、绝对型、相等型和策略型四种方式进行定义,并对实际带钢与历史带钢的各项冷却特征参数进行相似距离计算。当历史带钢的总相似距离满足要求时,将其聚类为实际带钢的相似卷,并考虑各相似卷的时间影响,计算相似权重值;随后,基于相似带钢的头部和尾部信息,建立由卷取温度预报误差、偏离学习系数回归值惩罚项和偏离默认值惩罚项等构成的目标函数以及相应的约束条件,采用梯度下降法求解该二次规划问题,通过三次优化逐步计算出学习系数参考值和表征学习系数与带钢速度及目标卷取温度呈双线性关系的两个参数;最后,根据实际带钢的穿带速度、目标卷取温度等冷却条件计算冷却设定所需的学习系数。现场应用表明:基于十万块历史带钢冷却数据驱动的模型参数即时自适应设定算法可增强卷取温度模型对带钢头部冷却的预设定能力,学习系数即时自适应设定能力随着内存中保存的历史带钢冷却数据的多样性和检索出的相似卷数量的增加而提升
文档格式:DOC 文档大小:27.5KB 文档页数:4
概述 在工程CAD绘图中,常常会遇到下列棘手的问题 在施工图后期,大部分图形文件都已完成,但因某一条件的变化,需在某卷图中增加(或减少)一些图 纸,这将导致许多相关图形文件的内容不得不进行相应的修改:如高层代号、图纸编号等 在实际工程设计中,为了提高效率,60%的图形是通过修改已有的设计而形成新的图形,这时常常进 行一些重复性的工作,比如图框的替换
文档格式:PDF 文档大小:754.89KB 文档页数:8
在输电场景中,吊车等大型机械的运作会威胁到输电线路的安全。针对此问题,从训练数据、网络结构和算法超参数的角度进行研究,设计了一种新的端到端的输电线路威胁检测网络结构TATLNet,其中包括可疑区域生成网络VRGNet和威胁判别网络VTCNet,VRGNet与VTCNet共享部分卷积网络以实现特征共享,并利用模型压缩的方式压缩模型体积,提升检测效率,从计算机视觉和系统工程的角度对入侵输电场景的大型机械进行精确预警。针对训练数据偏少的问题,利用多种数据增强技术相结合的方式对数据集进行扩充。通过充分的试验对本方法的多个超参数进行探究,综合检测准确率和推理速度来研究其最优配置。研究结果表明,随着网格数目的增加,准确率也随之增加,而召回率有先增加后降低的趋势,检测效率则随着网格的增加迅速降低。综合检测准确率与推理速度,确定9×9为最优网格划分方案;随着输入图像尺寸的增加,检测准确率稳步上升而检测效率逐渐下降,综合检测准确率和效率,选择480×480像素作为最终的图像输入尺寸。输入实验以及现场部署表明,相对于其他的轻量级目标检测算法,该方法对输电现场入侵的吊车等大型机械的检测具有更优秀的准确性和效率,满足实际应用的需要
文档格式:PDF 文档大小:1.54MB 文档页数:10
针对目前视网膜血管分割中存在的细小血管提取不完整、分割不准确的问题,从血管形状拓扑关系利用的角度出发,探索多任务卷积神经网络设计,提出骨架图引导的级联视网膜血管分割网络框架。该框架包含血管骨架图提取网络模块、血管分割网络模块和若干自适应特征融合结构体。骨架提取辅助任务用于提取血管中心线,能够最大限度地保留血管拓扑结构特征;自适应特征融合结构体嵌入在两个模块的特征层间。该结构体通过学习像素级的融合权重,有效地将血管拓扑结构特征与血管局部特征相融合,加强血管特征的结构信息响应。为了获得更完整的骨架图,骨架图提取网络还引入了基于图的正则化损失函数用于训练。与最新的血管分割方法相比,该方法在3个公共视网膜图像数据集上均获得第一名,在DRIVE,STARE和CHASEDB1中其F1值分别为83.1%,85.8%和82.0%。消融实验表明骨架图引导的视网膜血管分割效果更好,并且,基于图的正则化损失也能进一步提高血管分割准确性。通过将骨架提取模块和血管分割模块替换成不同的卷积网络验证了框架的普适性
上页12345678下页
热门关键字
搜索一下,找到相关课件或文库资源 71 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有