点击切换搜索课件文库搜索结果(719)
文档格式:PPT 文档大小:917.5KB 文档页数:62
4.1数值微积分 4.1.1 近似数值极限及导数 4.1.2 数值求和与近似数值积分 4.1.3 计算精度可控的数值积分 4.1.4 函数极值的数值求解 4.1.5 常微分方程的数值解 4.2矩阵和代数方程 4.2.1 矩阵运算和特征参数 4.2.2 矩阵的变换和特征值分解 4.2.3 线性方程的解 4.2.4 一般代数方程的解 4.3 概率分布和统计分析 4.3.1 概率函数、分布函数、逆分布函数和随机数的发生 4.3.2 随机数发生器和统计分析指令 4.4 多项式运算和卷积 • 4.4.1 多项式的运算函数 • 4.4.2 多项式拟合和最小二乘法 • 4.4.3 两个有限长序列的卷积
文档格式:DOC 文档大小:162KB 文档页数:2
第四章4-2子空间与商空间 4.2.4子空间的直和与直和的四个等价定义 定义设V是数域K上的线性空间,2…,是V的有限为子空间。若对于 ∑中任一向量,表达式 a=a1+a2+…+am,a1e,i=12,m 是唯一的,则称∑V为直和,记为 1 v⊕或V 定理设V12,…,Vn为数域K上的线性空间V上的有限为子空间,则下述四条等
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量 ( a:a 显然Aa=a=a'a'=a'a'a==a'aa=aa=aa=1从而 入|=1 推论正交矩阵的特征值只能是±1 命题设A是n维欧氏空间V上的正交变换,若A的特征多项式有一个根=e
文档格式:DOC 文档大小:204KB 文档页数:3
4.2.2子空间的交与和,生成元集 定义4.13设a1,a2,,a,∈V,则{ka1+k2a2++ka,k∈K,i=12}是V的 一个子空间,称为由a1,a2,,a,生成的子空间,记为(aa2,,a)易见,生成的子 空间的维数等于a1,a2,…,a的秩。 定义4.14子空间的交与和 设V1,V2为线性空间VK的子空间,定义 vnv2={ VEV2},称为子空间的交 V1+V2={v+v2v∈V1,v2∈V2},称为子空间的和。 命题4.9VNV2和V1+V2都是V的子空间
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性 函数。 命题f为对称双线性函数,当且仅当f在任意一组基下的矩阵为对称矩阵,当且仅 当f在某一组基下的矩阵为对称矩阵。 证明任取V的一组基1,2,…,n,任取a,B∈V,设它们在此组基下的坐标所构成 的列向量分别为X和Y,f在此组基下的矩阵记为A,若f为对称双线性函数,则由定
文档格式:DOC 文档大小:214.5KB 文档页数:2
第一学期第二十八次课 命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明M=M1+M2+…M “2”显然:“”a∈M,则存在a1∈V,使a=a1+a2+…+a,两边 同时用A(j=1,2,…,t-1)作用,得到表达式
文档格式:DOC 文档大小:140KB 文档页数:3
第五章5-3实与复二次型的分类 1.复、实二次型的规范形 定理复数域上的任一二次型f在可逆变数替换下都可化为规范形 zi+…+z, 其中r是f的秩.复二次型的规范形是唯一的. 证明复数域C上给定二次型) f=, x,x, ( =ai 设它在可逆线性变数替换X=TZ下变为标准型 d1z2+d2z2+…an 这相当于在C上n维线性空间V内做一个基变换 (n2n)=(1,2EnT 使对称双线性函数f(a,B)在新基下的矩阵成对角形
文档格式:PPT 文档大小:2.15MB 文档页数:153
11.1 概述 11.2 纠错编码的基本原理 11.3 纠错编码的性能 11.4简单的实用编码 11.4.1 奇偶监督码 11.4.2 二维奇偶监督码(方阵码) 11.4.3 恒比码 11.4.4 正反码 11.5 线性分组码 11.6 循环码 11.6.1 循环码原理 11.6.2 循环码的编解码方法 11.6.3 截短循环码 11.6.4 BCH码 11.6.5 RS码:它是一类具有很强纠错能力的多进制BCH码。 11.7 卷积码 11.7.1 卷积码的基本原理 11.7.2 卷积码的代数表述 与11.5节公式H  AT = 0 11.7.3 卷积码的解码 参照11.5节中监督关系的定义式,容易写出 011.。由上述可见,用网格图表示编码过程和输入输出关 11.8 Turbo码 11.9 低密度奇偶校验码 11.10 网格编码调制 11.10.1网格编码调制(TCM)的基本概念 11.10.2 TCM信号的产生 11.10.3 TCM信号的解调 11.11 小结
文档格式:DOC 文档大小:87KB 文档页数:2
第二章2矩阵的秩 2.1.1矩阵的行秩与列秩、矩阵的转置 定义2.1矩阵的行秩与列秩。 一个矩阵A的行向量组的秩成为A的行秩它的列向量组的秩称为A的列秩。 命题2.1矩阵的行(列)初等变换不改变行(列)秩 证明只需证明行变换不该行秩。容易证明经过任意一种初等行变换,得到的行向 量组与原来的向量组线性等价,所以命题成立。证毕。 定义2.2矩阵的转置 把矩阵A的行与列互换之后,得到的矩阵A称为矩阵A的转置矩阵 命题2.2矩阵的行(列)初等变换不改变列(行)秩
首页上页6566676869707172
热门关键字
搜索一下,找到相关课件或文库资源 719 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有