点击切换搜索课件文库搜索结果(115)
文档格式:PPT 文档大小:283.5KB 文档页数:29
解线性方程组的两类方法 直接法: 经过有限次运算后可求得方程组精确解的 方法(不计舍入误差!) 迭代法:从解的某个近似值出发,通过构造一个 无穷序列去逼近精确解的方法
文档格式:PPT 文档大小:253.5KB 文档页数:42
直接法:经过有限次运算后可求得方程组精确解的方 法(不计舍入误差!) 迭代法:从解的某个近似值出发,通过构造一个无穷序 列去逼近精确解的方法。(一般有限步内得不到精确解) 直接法比较适用于中小型方程组。对高阶方程组, 既使系数矩阵是稀疏的,但在运算中很难保持稀疏性, 因而有存储量大,程序复杂等不足
文档格式:PPT 文档大小:976.5KB 文档页数:50
一、概念 实际中,f(x)多样,复杂,通常只能观测到一些离散数据; 或者f(x)过于复杂而难以运算。这时我们要用近似函数g(x)来 逼近f(x) 自然地,希望g(x)通过所有的离散点
文档格式:PPT 文档大小:752.5KB 文档页数:32
用插值的方法对一函数进行近似,要求所得到的 插值多项式经过已知插值节点;在n比较大的情 况下,插值多项式往往是高次多项式这也就容 易出现振荡现象(龙格现象),即虽然在插值 节点上没有误差,但在插值节点之外插值误差变 得很大,从“整体”上看,插值逼近效果将变得“很 差”。 所谓数据拟合是求一个简单的函数,例如是一个 低次多项式,不要求通过已知的这些点而是要 求在整体上“尽量好”的逼近原函数。这时,在每 个已知点上就会有误差,数据拟合就是从整体上 使误差,尽量的小一些
文档格式:PDF 文档大小:140.36KB 文档页数:4
教学目的本节考虑可积函数的逼近问题.本节要证明几个关于积分的逼近定理主要是关于 Lebesgue积分的逼近定理。 教学要点 Lebesgue可积函数可以用比较简单的函数特别是用连续函数 逼近.由于连续函数具有较好的性质,因此L可积函数的逼近性质在处理有 些问题时是很有用的应通过例题和习题掌握这种方法
文档格式:PDF 文档大小:1.22MB 文档页数:111
§9.1 逼近问题的描述 §9.2 内积空间的最佳逼近 §9.3 最佳平方逼近与正交多项式 §9.4 周期函数的最佳平方逼近与快速傅立叶变换 §9.5 最佳一致逼近多项式 §9.6 切比雪夫多项式 §9.7 函数逼近的若干重要定理
文档格式:PDF 文档大小:162.77KB 文档页数:4
教学目的 本节考虑可积函数的逼近问题. 本节要证明几个关于积分的 逼近定理.主要是关于 Lebesgue 积分的逼近定理. 教学要点 Lebesgue 可积函数可以用比较简单的函数,特别是用连续函数 逼近. 由于连续函数具有较好的性质, 因此 L 可积函数的逼近性质在处理有 些问题时是很有用的.应通过例题和习题掌握这种方法. 设给定一个测度空间 (X , F ,µ), C 是可积函数类 L(µ) 的一个子类. 若对任意可积 函数 f ∈ L(µ) 和ε > 0, 存在一个 g ∈C , 使得 − µ < ε, ∫ f g d 则称可积函数可以用C 中的函数逼近
文档格式:PDF 文档大小:58.99KB 文档页数:3
介绍前苏联数学家Korovkin关于用多项式逼近连续函数的定理(Weierstrass第一逼近定理)的一种证明
文档格式:PPT 文档大小:657KB 文档页数:26
§1 离散情况下的最小平方逼近 §2 离散情况下使用正交多项式的最小平方逼近
文档格式:PDF 文档大小:128.55KB 文档页数:3
介绍前苏联数学家 Korovkin关于用多项式逼近连续函数的定理(Weierstrass第 一逼近定理)的一种证明。 指导思想 用多项式逼近连续函数,是经典分析学中重要的结果,以往教材中介绍的证明都 比较艰深,学生难以理解
首页上页56789101112下页末页
热门关键字
搜索一下,找到相关课件或文库资源 115 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有