点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:63KB 文档页数:2
将分块乘法与初等变换结合就成为矩阵运算中极端重要的手段
文档格式:DOC 文档大小:126.5KB 文档页数:4
一、二次型的标准型 二次型中最简单的一种是只包含平方项的二次型
文档格式:DOC 文档大小:125KB 文档页数:3
一、线性空间的定义. 例 1 在解析几何里,讨论过三维空间中的向量.向量的基本属性是可以按平行四边形规律相加,也可以与实数作数量算法.不少几何和力学对象的性质是可以通过向量的这两种运算来描述的
文档格式:PPT 文档大小:725KB 文档页数:30
一、欧氏空间的定义 二、欧氏空间中向量的长度 三、欧氏空间中向量的夹角 四、n维欧氏空间中内积的矩阵表示 五、欧氏子空间
文档格式:PPT 文档大小:396KB 文档页数:21
一、若当块的初等因子 二、若当形矩阵的初等因子 三、若当标准形存在定理
文档格式:PPT 文档大小:479.5KB 文档页数:25
一、初等因子的定义 二、初等因子与不变因子的关系 三、初等因子的求法
文档格式:DOC 文档大小:132KB 文档页数:4
在 n 维线性空间中,任意 n 个线性无关的向量都可以取作空间的基.对于不 同的基,同一个向量的坐标一般是不同的.随着基的改变,向量的坐标是怎样变 化的
文档格式:DOC 文档大小:109KB 文档页数:3
定理 5 如果 V1 ,V2 是线性空间 V 的两个子空间,那么它们的交 V1 V2 也是 V 的子空间
文档格式:DOC 文档大小:111KB 文档页数:2
设E1,E2,…,E是线性空间V的一组基,在这组基下,V中每个向量都有确定 的坐标,而向量的坐标可以看成P元素,因此向量与它的坐标之间的对应实质 上就是V到P的一个映射.显然这个映射是单射与满射,换句话说,坐标给出了 线性空间V与P的一个双射.这个对应的重要性表现在它与运算的关系上
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
首页上页7778798081828384下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有