Axiom Schemata for F Axiom Schema 1 A ∨ A ⊃ A Axiom Schema 2 A ⊃ (B ∨ A) Axiom Schema 3 A ⊃ B ⊃ (C ∨ A ⊃ (B ∨ C)) Axiom Schema 4 ∀xA ⊃ Sxt A where t is a term free for the individual variable x in A Axiom Schema 5 ∀x(A ∨ B) ⊃ (A ∨ ∀xB) provided that x is not free in A
The primitive symbols of E are those of F, plus the symbol ∃. The formation Rules of E are those of F, plus the following If B is a wff of E and x is an individual variable, then ∃xB is a wff of E. The axiom schemata of E are those of F plus
Substitutivity of Equivalence Let A,M and N be wffs and let AMN be the result of replacing M by N at zero or more occurrences (henceforth called designate occurrences) of M in A. 1. AMN is a wff. 2. If |= M ≡ N then |= A ≡ AMN
Some Properties 1. ∆n is consistent. 2. Γ ⊆ ∆n ⊆ ∆n+1 ⊆ ∆Γ 3. ∆Γ is complete. 4. If ∆Γ ` A then there exists n ∈ N such that ∆n ` A. 5. A ∈ ∆Γ iff ∆Γ ` A 6. ∆Γ is consistent