点击切换搜索课件文库搜索结果(9805)
文档格式:DOC 文档大小:128.5KB 文档页数:4
这一节我们来建立矩阵的初等变换与矩阵乘法的联系,并在这个基础上,给 出用初等变换求逆矩阵的方法
文档格式:DOC 文档大小:197.5KB 文档页数:2
第四章4-4特征值与特征向量(续) 4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组 5+52++=0,j0,1,t-1 其中入的方幂组成的矩阵为
文档格式:DOC 文档大小:116KB 文档页数:3
一、可逆矩阵的概念 在§2 我们看到,矩阵与复数相仿,有加、减、乘三种运算.矩阵的乘法是否 也和复数一样有逆运算呢?这就是本节所要讨论的问题. 这一节矩阵,如不特别声明,都是 nn 矩阵
文档格式:DOC 文档大小:77.5KB 文档页数:1
第四章4-4线性变换的特征值与特征向量 4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属 于特征值λ的特征向量。 命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。 证明设51,52是属于的特征向量,Vk,∈K,则 A(k5+2)=k()+a(2)=k+2=(k5+152), 证毕。 定义线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间称 为属于特征值的特征子空间,记为V 4.4.2特征值和特征子空间的计算、特征多项式
文档格式:DOC 文档大小:338KB 文档页数:8
第十八讲 Newton- Leibniz公式与定积分的计算 课后作业: 阅读:第七章74:256-262;75:pp263-268; 预习:76:pp269--285;77:p.288-295 练习pp262-263:习题74 复习题全部习题1,(1),(2);2,(1);3,单数题号 51),(2 pp.268-269:习题75 习题1、1)(2)(3)(5)(6);2,(1)(2)(3)(5),(7); 3,(1)(2) 作业pp262--263:习题74 习题13,(4);2,(2);3,双数题号;5(3),(4) pp268-269:习题7.5
文档格式:DOC 文档大小:67.5KB 文档页数:2
在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的 系数矩阵和增广矩阵的性质上,并且解线性方程组的过程也表现为变换这些矩阵 的过程.除了线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念, 并且这些问题的研究常常反映为有关矩阵的某些方面的研究
文档格式:DOC 文档大小:85KB 文档页数:4
在解决线性方程组有解的判别条件之后,进一步来讨论线性方程组解的结构. 所谓解的结构问题就是解与解之间的关系问题
文档格式:DOC 文档大小:515.5KB 文档页数:5
习题讨论 题目: 1,计算I dx ta 2,计算lm=r(mndt,其中Bm为自然数 8,计算J=(11 xax,其中x是x的整数部分 sIn x sIn x 4,一研究l1= dx, dx,p>O的敛散性 x +sinx 5,设f:(-∞+∞)→R,在任何有限区间可积,且有limf(x)=A, 明,Ⅵt,()=「((x+0-f(x)=0 第七章定积分
文档格式:DOC 文档大小:66.5KB 文档页数:3
一、矩阵的秩 如果把矩阵的每一行看成一个向量,那么矩阵就可以认为是由这些向量组成 的.同样,如果把每一列看成一个向量,那么矩阵也可以认为是由列向量组成的. 定义 15 所谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵 的列向量组的秩
首页上页974975976977978979980981下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9805 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有