点击切换搜索课件文库搜索结果(193)
文档格式:PDF 文档大小:533.59KB 文档页数:6
详细论述了金属材料的热机械疲劳试验与研究现状,分析了金属材料的热机械疲劳特性,讨论了热机械疲劳试验方法,并提出了目前热机械疲劳试验与研究中存在的问题,以及热机械疲劳研究领域的研究方向
文档格式:PDF 文档大小:343.71KB 文档页数:4
针对GH33A高温合金材料在温度与机械应变同时交变条件下的热机械循环塑性性能,就相位差对该材料在热机械循环状态下的循环硬化、循环软化和疲劳寿命的影响进行分析和讨论.结果表明:相位差影响材料的循环硬化与软化;在570~825℃的温度交变条件下,同相热机械疲劳寿命比反相热机械疲劳寿命短
文档格式:PPT 文档大小:1.31MB 文档页数:23
历史上,热力学理论最初是在研究热机工作过 程的基础上发展起来的。 热机发展简介1698年萨维利和1705年纽可门先后 发明了蒸汽机,当时蒸汽机的效率极低,1765年瓦特进 行了重大改进,大大提高了效率。人们一直在为提高 热机的效率而努力,从理论上研究热机效率问题,一方 面指明了提高效率的方向,另一方面也推动了热学理论 的发展
文档格式:PDF 文档大小:6.67MB 文档页数:8
采用MTS®热机械疲劳电液伺服试验机研究了4Cr5MoSiV1热作模具钢400~700℃范围内拉压对称机械应变控制的同相及反相热机械疲劳行为.结果表明:当应变幅为±0.50%时,4Cr5MoSiV1钢反相热机械疲劳寿命约为同相的60%;无论同相还是反相加载,应力-应变滞后回线均呈现不对称性,同相加载时表现为平均压缩应力,反相加载时表现为平均拉伸应力.两种加载方式下,最大应力与最大应变及峰值温度均不同步,在高温半周出现应力松弛现象.此外,高温半周呈现持续循环软化,而低温半周呈现初始循环硬化,随后持续循环软化的特征.同相加载时断口以主裂纹、撕裂脊和准解理特征为主,裂纹少而深;反相加载时断口以疲劳条纹和大量的凹坑特征为主,裂纹多而浅
文档格式:PPT 文档大小:23.58MB 文档页数:112
§13-3 循环与效率 13-3-1 循环过程 13-3-2 热机和热机效率 13-3-3 制冷机和制冷系数 13-3-4 卡诺循环 13-3-2 热机及热机效率 13-3-3 致冷机及致冷效率 13-3-4卡诺循环 §13-4 热力学第二定律 13-4-1 可逆与不可逆过程 13-4-2 热二定律两种表述 13-4-3 卡诺定理 13-4-4 克劳修斯熵 13-4-5 熵增加原理 13-4-2 热力学第二定律 (两种表述) §13-5 热二定律统计意义 13-5-1 热二定律的统计意义 13-5-2 玻尔兹曼熵 13-5-2 玻耳兹曼熵公式
文档格式:DOC 文档大小:626KB 文档页数:6
热机发展简介 1698年萨维利和1705年纽可门先后发明了蒸汽机,当时蒸汽机的效率极低。 1765年瓦特进行了重大改进,大大提高了效率。人们一直在为提高热机的效率 而努力,从理论上研究热机效率问题,一方面指明了提高效率的方向, 另一方面也推动了热学理论的发展
文档格式:PPT 文档大小:775KB 文档页数:22
热机发展简介 1698年萨维利和1705年纽可门先后发 明了蒸气机 ,当时蒸气机的效率极低 . 1765年瓦特进行了重大改进,大大提高了 效率 . 人们一直在为提高热机的效率而努 力,从理论上研究热机效率问题, 一方面 指明了提高效率的方向, 另一方面也推动 了热学理论的发展
文档格式:PPT 文档大小:1.2MB 文档页数:16
热机发展简介 1698年萨维利和1705年纽可门先后发明了蒸 汽机 ,当时蒸汽机的效率极低 . 1765年瓦特进 行了重大改进 ,大大提高了效率 . 人们一直在 为提高热机的效率而努力, 从理论上研究热机 效率问题, 一方面指明了提高效率的方向, 另 一方面也推动了热学理论的发展
文档格式:PPT 文档大小:1.9MB 文档页数:22
热机(heat engine)发展简介1698年萨维利和1705年纽可门先后发明了蒸汽机,当时蒸汽机的效率极低.1765年瓦特进 行了重大改进,大大提高了效率.人们一直在为提高热机的效率而努力,从理论上研究热机效率问题,一方面指明了提高效率的方向,另 一方面也推动了热学理论的发展
文档格式:PPT 文档大小:1.19MB 文档页数:16
一、热机发展简介 1698年萨维利和1705年纽可门先后发明了蒸 汽机,当时蒸汽机的效率极低.1765年瓦特进 行了重大改进,大大提高了效率.人们一直在 为提高热机的效率而努力,从理论上研究热机 效率问题,一方面指明了提高效率的方向,另 一方面也推动了热学理论的发展
12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 193 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有