第五章t检验 统计推断是根据样本和假定模型对总体作 出的以概率形式表述的推断,它主要包括假设 检验( test of hypothesis)和参数估计 ( parametric estimation)二个内容。 上一张下一张主页退出
上一张 下一张 主 页 退 出
假设检验又叫显著性检验( test of significance)。显著性检验的方法很多,常 用的有检验、F检验和检验等。尽管这些检验 方法的用途及使用条件不同,但其检验的基本原 理是相同的。本章以两个平均数的差异显著性检 验为例来阐明显著检验的原理,介绍几种检 验的方法,然后介绍总体参数的区间估 计( interval estimation)。 上一张下一张主页退出
上一张 下一张 主 页 退 出
第一节显著性检验的基本原理 显著性检验的意义 随机抽测10头长白猪和10头大白猪经产母猪的产 仔数,资料如下: 长白:11,11,9,12,10,13,13,8,10,13 大白:8,11,12,10,9,8,8,9,10,7 经计算,得长白猪10头经产母猪产仔平均数x =11头,标准差S1=176头;大白猪10头经产母猪 产仔平均数x2=92头,标准差S2=1549头。 上一张下一张主页退出
1 x 2 x 上一张 下一张 主 页 退 出
能否仅凭这两个平均数的差值x-x2=18 头,立即得出长白与大白两品种经产母猪产仔数 不同的结论呢?统计学认为,这样得出的结论是 不可靠的。这是因为如果我们再分别随机抽测 10头长白猪和10头大白猪经产母猪的产仔数, 又可得到两个样本资料。由于抽样误差的随机 性,两样本平均数就不一定是11头和92头,其 差值也不一定是18头。造成这种差异可能有两 种原因,一是品种造成的差异,即是长白猪与大 白猪本质不同所致,另一可能是试验误差(或抽 样误差)。 上一张下一张主页退出
1 x 2 x 上一张 下一张 主 页 退 出
对两个样本进行比较时,必须判断样本间 差异是抽样误差造成的,还是本质不同引起的 如何区分两类性质的差异?怎样通过样本来推断 总体?这正是显著性检验要解决的问题。 两个总体间的差异如何比较?一种方法是研 究整个总体,即由总体中的所有个体数据计算出 总体参数进行比较。这种研究整个总体的方法是 很准确的,但常常是不可能进行的,因为总体往 往是无限总体,或者是包含个体很多的有限总 体。因此,不得不采用另一种方法,即研究样 上一张下一张主页退出
上一张 下一张 主 页 退 出
样本,通过样本研究其所代表的总体。例如,设 长白猪经产母猪产仔数的总体平均数为A1,大 白猪经产母猪产仔数的总体平均数为2,试验 研究的目的,就是要给A1、2是否相同做出推 断。由于总体平均数A、未知,在进行显著性 检验时只能以样本平均数x1、x2作为检验对象, 更确切地说,是以(x1-x2)作为检验对象 为什么以样本平均数作为检验对象呢?这是 因为样本平均数具有下述特征: 1、离均差的平方和Σ(x-x)2最小。说 明样本平均数与样本各个观测值最接近,平均数 是资料的代表数。 上一张下一张主页退出
1 2 1 2 1 2 1 x 2 x 1 x 2 x x x 上一张 下一张 主 页 退 出
2、样本平均数是总体平均数的无偏估计 值,即E()=μ 3、根据统计学中心极限定理,样本平均数 x服从或逼近正态分布。 所以,以样本平均数作为检验对象,由两个 样本平均数差异的大小去推断样本所属总体平均 数是否相同是有其依据的。 由上所述,一方面我们有依据由样本平均 数,和,的差异来推断总体平均数 相 同与否,另一方面又不能仅据样本平均数表面 上的差异直接作出结论,其根本原因在于试验 误差(或抽样误差)的不可避免性。 上一张下一张主页退出
x x x1 1 2 2 x 上一张 下一张 主 页 退 出
通过试验测定得到的每个观测值x,既由被 测个体所属总体的特征决定,又受个体差异和诸 多无法控制的随机因素的影响。所以观测值x由 两部分组成,即 x1=+E 总体平均数反映了总体特征,表示误差。 若样本含量为n,则可得到n个观测 值 9-n° 于是样本平均数 x=∑x/n=∑(+6)n=+6 上一张下一张主页退出
i x i x i xi i n x 1 x 2 x x x n n i i ( )/ 上一张 下一张 主 页 退 出
说明样本平均数并非总体平均数,它还包含试验误 差的成分。 对于接受不同处理的两个样本来说,则有: x1=A+;,x2=2+E x1-x2=(1-2)+(E1-E2 这说明两个样本平均数之差(x1-x2)也包括了两部 分: 一部分是两个总体平均数的差(A-2),叫做 试验的处理效应( treatment effect);另 一部分是试验误差(1-82)。 上一张下一张主页退出
x1 1 x2 2 1 2 1 x 2 x 1 2 1 2 上一张 下一张 主 页 退 出 ( ) ( ) 1 2 1 2 1 2 x x
也就是说样本平均数的差(x1=x2)包含有 试验误差,它只是试验的表面效应。因此,仅凭 (x1-x2)就对总体平均数A、A是否相同下 结论是不可靠的。只有通过显著性检验才能从 (x-x2)中提取结论。 对(不1-2)进行显著性检验就是要分析: 试验的表面效应(x1-x2)主要由处理效应 (H1=2)引起的,还是主要由试验误差所造 成。 上一张下一张主页退出
1 x 2 x 1 x 2 x 2 x1 x 1 2 1 x 2 x 1 x 2 x 1 2 上一张 下一张 主 页 退 出