藿乐威尔田园的真正迷人之处,在我看是:它的遁隐之深,高开村子有两英里, 脔开最近的邻居有半英里。并且有一大片地把它和公路隔开了:它傍着河流,据 它的主人说,由于这条河,而升起了雾,春天就不金下霜了。 梭罗 在地球表面的任何地方都存在着垂直的和水平的两种关系:垂直关系把同一个地 方的不同要素联结起来,而水平关系则把不同地方的各种因素联结起来。这两种 关系的相对重要性随时代的变化而有所不同正是这双重的关注,甚而至于这两 种关系的结合,寸才为地理学提供了独特性和完整性。 R.J.约翰斯顿 第三章空间数据模型 导读:本章描述的是整个GIS理论中最为核心的内容。为了能够利用信息系统工具 来描述现实世界,并解决其中的问题,必须对现实世界进行建模。对于地理信息系 统而言,其结果就是空间数据模型。空间数据模型可以分为三种 场模型:用于描述空间中连续分布的现象; 要素模型:用于描述各种空间地物 网络模型:可以模拟现实世界中的各种网络 在各种模型中,又介绍了相关的概念,如空间划分,空间关系,以及拓扑关系的形 式化描述—9交模型等。 最后讲述了普通的二维数据模型在空间上和时间上的扩展,时间数据模型和三维数 据模型 值得注意的是,本章谈到的场模型和要素模型类冋于后面提及的栅格数据和矢量数 据,但是前者是概念模型;后者是指其在信息系统中的实现。 空间数据模型的基本问题 人类生活和生产所在的现实世界是由事物或实体组成的,有着错综复杂的组成结构。从 系统的角度来看,空间事物或实体的运动状态(在特定时空中的性状和态势)和运动方式(运 动状态随时空变化而改变的式样和规律)不断发生变化,系统的诸多组成要素(实体)之间 又存在着相互作用、相互制约的依存关系,表现为人口、物质、能量、信息、价值的流动和
藿乐威尔田园的真正迷人之处,在我看是:它的遁隐之深,离开村子有两英里, 离开最近的邻居有半英里,并且有一大片地把它和公路隔开了;它傍着河流,据 它的主人说,由于这条河,而升起了雾,春天就不会下霜了。 梭罗 在地球表面的任何地方都存在着垂直的和水平的两种关系:垂直关系把同一个地 方的不同要素联结起来,而水平关系则把不同地方的各种因素联结起来。这两种 关系的相对重要性随时代的变化而有所不同…正是这双重的关注,甚而至于这两 种关系的结合,才为地理学提供了独特性和完整性。 R.J.约翰斯顿 第三章 空间数据模型 导读:本章描述的是整个 GIS 理论中最为核心的内容。为了能够利用信息系统工具 来描述现实世界,并解决其中的问题,必须对现实世界进行建模。对于地理信息系 统而言,其结果就是空间数据模型。空间数据模型可以分为三种: 场模型:用于描述空间中连续分布的现象; 要素模型:用于描述各种空间地物; 网络模型:可以模拟现实世界中的各种网络; 在各种模型中,又介绍了相关的概念,如空间划分,空间关系,以及拓扑关系的形 式化描述——9 交模型等。 最后讲述了普通的二维数据模型在空间上和时间上的扩展,时间数据模型和三维数 据模型。 值得注意的是,本章谈到的场模型和要素模型类同于后面提及的栅格数据和矢量数 据,但是前者是概念模型;后者是指其在信息系统中的实现。 1.空间数据模型的基本问题 人类生活和生产所在的现实世界是由事物或实体组成的,有着错综复杂的组成结构。从 系统的角度来看,空间事物或实体的运动状态(在特定时空中的性状和态势)和运动方式(运 动状态随时空变化而改变的式样和规律)不断发生变化,系统的诸多组成要素(实体)之间 又存在着相互作用、相互制约的依存关系,表现为人口、物质、能量、信息、价值的流动和
作用,反映出不同的空间现象和问题。为了控制和调节空间系统的物质流、能量流和人流等 使之转移到期望的状态和方式,实现动态平衡和持续发展,人们开始考虑对其中诸组成要素 的空间状态、相互依存关系、变化过程、相互作用规律、反馈原理、调制机理等进行数字模 拟和动态分析,这在客观上为地理信息系统提供了良好的应用环境和重要发展动力。 1.1概念 地理数据也可以称为空间数据( Spatial Data)。地理空间是指物质、能量、信息的存在 形式在形态、结构过程、功能关系上的分布方式和格局及其在时间上的延续。地理信息系统 中的地理空间分为绝对空间和相对空间两种形式。绝对空间是具有属性描述的空间位置的集 合,它由一系列不同位置的空间坐标值组成:相对空间是具有空间属性特征的实体的集合, 由不同实体之间的空间关系构成。在地理信息系统应用中,空间概念贯穿于整个工作对象 工作过程、工作结果等各个部分。空间数据就是以不同的方式和来源获得的数据,如地图 各种专题图、图像、统计数据等,这些数据都具有能够确定空间位置的特点 空间数据模型是关于现实世界中空间实体及其相互间联系的概念,它为描述空间数据的 组织和设计空间数据库模式提供着基本方法。因此,对空间数据模型的认识和研究在设计 GIS空间数据库和发展新一代GIS系统的过程中起着举足轻重的作用(图3-1)。 户 计算机 模型 设计者 图3-1:概念数据模型 1.2空间数据模型的类型 在GIS中与空间信息有关的信息模型有三个,即基于对象(要素)( Feature)的模型 网络( Network)模型以及场(rild)模型。基于对象(要素)的模型强调了离散对象,根 据它们的边界线以及组成它们或者与它们相关的其它对象,可以详细地描述离散对象。网络 模型表示了特殊对象之间的交互,如水或者交通流。场模型表示了在二维或者三维空间中被 看作是连续变化的数据 有很多类型的数据,有时被看作场,有时被看作对象。选择某一种模型而不选择另外 种模型主要是顾及数据的测量方式。如果数据来源于卫星影像,其中某一现象的一个值主要 是为区域内每一个位置提供的,如作物类型或者森林类型可以采用一个基于场的观点:如果 数据是以测量区域边界线的方式而且区域内部被看成是一致的,就可以采用一个基于要素的 观点:如果是将分类空间分成粗略的子类,一个基于场的模型可以被转换成一个基于要素的
作用,反映出不同的空间现象和问题。为了控制和调节空间系统的物质流、能量流和人流等, 使之转移到期望的状态和方式,实现动态平衡和持续发展,人们开始考虑对其中诸组成要素 的空间状态、相互依存关系、变化过程、相互作用规律、反馈原理、调制机理等进行数字模 拟和动态分析,这在客观上为地理信息系统提供了良好的应用环境和重要发展动力。 1.1 概念 地理数据也可以称为空间数据(Spatial Data)。地理空间是指物质、能量、信息的存在 形式在形态、结构过程、功能关系上的分布方式和格局及其在时间上的延续。地理信息系统 中的地理空间分为绝对空间和相对空间两种形式。绝对空间是具有属性描述的空间位置的集 合,它由一系列不同位置的空间坐标值组成;相对空间是具有空间属性特征的实体的集合, 由不同实体之间的空间关系构成。在地理信息系统应用中,空间概念贯穿于整个工作对象、 工作过程、工作结果等各个部分。空间数据就是以不同的方式和来源获得的数据,如地图、 各种专题图、图像、统计数据等,这些数据都具有能够确定空间位置的特点。 空间数据模型是关于现实世界中空间实体及其相互间联系的概念,它为描述空间数据的 组织和设计空间数据库模式提供着基本方法。因此,对空间数据模型的认识和研究在设计 GIS 空间数据库和发展新一代 GIS 系统的过程中起着举足轻重的作用(图 3-1)。 图 3-1:概念数据模型 1.2 空间数据模型的类型 在 GIS 中与空间信息有关的信息模型有三个,即基于对象(要素)(Feature)的模型、 网络(Network)模型以及场(Field)模型。基于对象(要素)的模型强调了离散对象,根 据它们的边界线以及组成它们或者与它们相关的其它对象,可以详细地描述离散对象。网络 模型表示了特殊对象之间的交互,如水或者交通流。场模型表示了在二维或者三维空间中被 看作是连续变化的数据。 有很多类型的数据,有时被看作场,有时被看作对象。选择某一种模型而不选择另外一 种模型主要是顾及数据的测量方式。如果数据来源于卫星影像,其中某一现象的一个值主要 是为区域内每一个位置提供的,如作物类型或者森林类型可以采用一个基于场的观点;如果 数据是以测量区域边界线的方式而且区域内部被看成是一致的,就可以采用一个基于要素的 观点;如果是将分类空间分成粗略的子类,一个基于场的模型可以被转换成一个基于要素的
模型,因为后者更适合于离散面的或者线的特征的度量和分析。 1.3GIS空间数据模型的学术前沿 时空数据模型、三维数据模型、动态空间数据结构、分布式空间数据管理、空间存取方 法、GIS设计的CASE工具等是目前国际上GIS空间数据模型研究的学术前沿。 3.1时空数据模型 时空数据模型的核心问题是研究如何有效地表达、记录和管理现实世界的实体及其相互 关系随时间不断发生的变化。这种时空变化表现为三种可能的形式,一是属性变化,其空间 坐标或位置不变;二是空间坐标或位置变化,而属性不变,这里空间的坐标或位置变化既可 以是单一实体的位置、方向、尺寸、形状等发生变化,也可以是两个或两个以上的空间实体 之间的关系发生变化;三是空间实体或现象的坐标和属性都发生变化。当前时态GIS研究 的主要问题有:表达时空变化的数据模型、时空数据组织与存取方法、时空数据库的版本问 题、时空数据库的质量控制、时空数据的可视化问题等。 1.3.2三维空间数据模型 国际上关于三维空间数据模型的研究大体上可分为两个方向:一是三维矢量模型,其是 用一些基元及其组合去表示三维空间目标,这些基元本身是可以用简单数学解析函数描述 的。二是体模型,以体元( Voxel)模型为代表,这种体元模型的特点是易于表达三维空间 属性的非均衡变化,其缺点是所占存储空间大、处理时间长。 1.3.3分布式空间数据模型 分布式空间数据库管理系统和联邦空间数据库是国际上关于分布式空间数据模型的两 个主要研究方向 1)分布式空间数据库管理系统 分布式空间数据库管理系统是将空间数据库技术与计算机网络技术相结合,利用计算机 网络对通过通讯线路相关联的空间数据库进行数据和程序的分布处理,以实现集中与分布的 统一,即分布式空间数据库管理系统是将分散的空间数据库连成一体。其主要问题包括空间 数据的分割、分布式查询、分布式并发控制 2)联邦空间数据库( Federated Spatial Database) 联邦空间数据库则是在不改变不同来源的各空间数据库管理系统的前提下,将非均质的 空间数据库系统联成一体,形成联邦式的空间数据库管理体系,并向用户提供统一的视图。 1.3.4CASE工具 CASE工具是计算机信息系统结构化分析、数据流程描述、数据实体关系表达、数据字 典与系统原型生成、原代码生成的重要工具,在非空间型计算机信息系统的设计与建立中有
模型,因为后者更适合于离散面的或者线的特征的度量和分析。 1.3 GIS 空间数据模型的学术前沿 时空数据模型、三维数据模型、动态空间数据结构、分布式空间数据管理、空间存取方 法、GIS 设计的 CASE 工具等是目前国际上 GIS 空间数据模型研究的学术前沿。 1.3.1 时空数据模型 时空数据模型的核心问题是研究如何有效地表达、记录和管理现实世界的实体及其相互 关系随时间不断发生的变化。这种时空变化表现为三种可能的形式,一是属性变化,其空间 坐标或位置不变;二是空间坐标或位置变化,而属性不变,这里空间的坐标或位置变化既可 以是单一实体的位置、方向、尺寸、形状等发生变化,也可以是两个或两个以上的空间实体 之间的关系发生变化;三是空间实体或现象的坐标和属性都发生变化。当前时态 GIS 研究 的主要问题有:表达时空变化的数据模型、时空数据组织与存取方法、时空数据库的版本问 题、时空数据库的质量控制、时空数据的可视化问题等。 1.3.2 三维空间数据模型 国际上关于三维空间数据模型的研究大体上可分为两个方向:一是三维矢量模型,其是 用一些基元及其组合去表示三维空间目标,这些基元本身是可以用简单数学解析函数描述 的。二是体模型,以体元(Voxel)模型为代表,这种体元模型的特点是易于表达三维空间 属性的非均衡变化,其缺点是所占存储空间大、处理时间长。 1.3.3 分布式空间数据模型 分布式空间数据库管理系统和联邦空间数据库是国际上关于分布式空间数据模型的两 个主要研究方向。 1)分布式空间数据库管理系统 分布式空间数据库管理系统是将空间数据库技术与计算机网络技术相结合,利用计算机 网络对通过通讯线路相关联的空间数据库进行数据和程序的分布处理,以实现集中与分布的 统一,即分布式空间数据库管理系统是将分散的空间数据库连成一体。其主要问题包括空间 数据的分割、分布式查询、分布式并发控制。 2)联邦空间数据库(Federated Spatial Database) 联邦空间数据库则是在不改变不同来源的各空间数据库管理系统的前提下,将非均质的 空间数据库系统联成一体,形成联邦式的空间数据库管理体系,并向用户提供统一的视图。 1.3.4 CASE 工具* CASE 工具是计算机信息系统结构化分析、数据流程描述、数据实体关系表达、数据字 典与系统原型生成、原代码生成的重要工具,在非空间型计算机信息系统的设计与建立中有
着较为广泛的应用。当前国际上的一个重要发展方向是,根据GIS空间数据建模的特点和 CASE工具的原理,在现有CASE软件平台上,发展GIS空间数据建模与系统设计的专用功 能,这将有效地提高GIS空间数据建模及其应用系统设计的自动化程度和技术水平。 2.场模型 对于模拟具有一定空间内连续分布特点的现象来说,基于场的观点是合适的。例如,空 气中污染物的集中程度、地表的温度、土壤的湿度水平以及空气与水的流动速度和方向。根 据应用的不同,场可以表现为二维或三维。一个二维场就是在二维空间中任何已知的地点上 都有一个表现这一现象的值:而一个三维场就是在三维空间中对于任何位置来说都有一个 值。一些现象,诸如空气污染物在空间中本质上讲是三维的,但是许多情况下可以由一个二 维场来表示 场模型可以表示为如下的数学公式: z:57(s) 上式中,z为可度量的函数,s表示空间中的位置,因此该式表示了从空间域(甚至包 括时间坐标)到某个值域的映射。表3-1给出了地理研究中一些常模型的例子[ A. Vckovsk 场模型定义域维数值域维数自变量 因变量 空间坐标(高程) 高度z处的气温 时间坐标 某时刻的静电力 H(x, y 11233343 空间坐标 地表高程 P(x,v=) 1空间坐标 土壤的孔隙度 v(,中,2) 空间坐标(λ,中经纬风速(三维矢量) 391 度,z高度) 空间坐标 压力张量 61,中,D,U p压力面,t时间潜温 e(1,中,D p压力面 时间序列的潜温 (x.y=,1. 1x,y,z,t时空坐标,λ波长λ的电磁波在 波长 处的辐射强度 2.1场的特征 场经常被视为由一系列等值线组成,一个等值线就是地面上所有具有相同属性值的点的 有序集合 2.1.1空间结构特征和属性域 在实际应用中,“空间”经常是指可以进行长度和角度测量的欧几里德空间。空间结构 可以是规则的或不规则的,但空间结构的分辨率和位置误差则十分重要,它们应当与空间结 构设计所支持的数据类型和分析相适应。属性域的数值可以包含以下几种类型:名称、序数 间隔和比率。属性域的另一个特征是支持空值,如果值未知或不确定则赋予空值。 在“地理信息系统软件工程技术”一章较为详尽的描述了该领域的内容
着较为广泛的应用。当前国际上的一个重要发展方向是,根据 GIS 空间数据建模的特点和 CASE 工具的原理,在现有 CASE 软件平台上,发展 GIS 空间数据建模与系统设计的专用功 能,这将有效地提高 GIS 空间数据建模及其应用系统设计的自动化程度和技术水平。 2.场模型 对于模拟具有一定空间内连续分布特点的现象来说,基于场的观点是合适的。例如,空 气中污染物的集中程度、地表的温度、土壤的湿度水平以及空气与水的流动速度和方向。根 据应用的不同,场可以表现为二维或三维。一个二维场就是在二维空间中任何已知的地点上, 都有一个表现这一现象的值;而一个三维场就是在三维空间中对于任何位置来说都有一个 值。一些现象,诸如空气污染物在空间中本质上讲是三维的,但是许多情况下可以由一个二 维场来表示。 场模型可以表示为如下的数学公式: z : s→ z ( s ) 上式中,z 为可度量的函数,s 表示空间中的位置,因此该式表示了从空间域(甚至包 括时间坐标)到某个值域的映射。表 3-1 给出了地理研究中一些常模型的例子[A. Vckovski]。 场模型 定义域维数 值域维数 自变量 因变量 T(z) 1 1 空间坐标(高程) 高度 z 处的气温 E(t) 1 3 时间坐标 某时刻的静电力 H(x,y) 2 1 空间坐标 地表高程 P(x,y,z) 3 1 空间坐标 土壤的孔隙度 v(λ,φ,z) 3 3 空间坐标(λ,φ经纬 度,z 高度) 风速(三维矢量) σ(x,y,z) 3 9 空间坐标 压力张量 Θ(λ,φ,p,t) 4 1 p 压力面,t 时间 潜温 Θt(λ,φ,p) 3 ∞ p 压力面 时间序列的潜温 I(x,y,z,t,λ) 5 1 x,y,z,t 时空坐标,λ 波长 波 长 λ 的 电 磁 波 在 x,y,z,t 处的辐射强度 2.1 场的特征 场经常被视为由一系列等值线组成,一个等值线就是地面上所有具有相同属性值的点的 有序集合。 2.1.1 空间结构特征和属性域 在实际应用中,“空间”经常是指可以进行长度和角度测量的欧几里德空间。空间结构 可以是规则的或不规则的,但空间结构的分辨率和位置误差则十分重要,它们应当与空间结 构设计所支持的数据类型和分析相适应。属性域的数值可以包含以下几种类型:名称、序数、 间隔和比率。属性域的另一个特征是支持空值,如果值未知或不确定则赋予空值。 * 在“地理信息系统软件工程技术”一章较为详尽的描述了该领域的内容
2.1.2连续的、可微的、离散的 如果空间域函数连续的话,空间域也就是连续的,即随着空间位置的微小变化,其属性 值也将发生微小变化,不会出现像数字高程模型中的悬崖那样的突变值。只有在空间结构和 属性域中恰当地定义了“微小变化”,“连续”的意义才确切; 当空间结构是二维(或更多维)时,坡度一一或者称为变化率一一不仅取决于特殊的位 置,而且取决于位置所在区域的方向分布(图3-2)。连续与可微分两个概念之间有逻辑关 系,每个可微函数一定是连续的,但连续函数不一定可微 上坡坡向 平均坡度 零度坡度 零度坡度 图3-2:某点的坡度取决于位置所在区域的各方向上的可微性 如果空间域函数是可微分的,空间域就是可微分的;行政区划的边界变化是离散的一个 例子,如果目前测得的边界位于A,而去年这时边界位于B,但这并不表明6个月前边界将 位于BA之间的中心,边界具有不连续跃变 2.1.3与方向无关的和与方向有关的(各向同性和各向异性) 空间场内部的各种性质是否随方向的变化而发生变化,是空间场的一个重要特征。如果 一个场中的所有性质都与方向无关,则称之为各向同性场( (Isotropic Field)。例如旅行时间 假如从某一个点旅行到另一个点所耗时间只与这两点之间的欧氏几何距离成正比,则从一个 固定点出发,旅行一定时间所能到达的点必然是一个等时圆,如图3-3-a)所示。如果某一点 处有一条高速通道,则利用与不利用高速通道所产生的旅行时间是不同的,见图3-3-(b)。 等时线已标明在图中,图中的双曲线是利用与不利用高速通道的分界线。本例中的旅行时间 与目标点与起点的方位有关,这个场称为各向异性场( Anisotropic Field)
2.1.2 连续的、可微的、离散的 如果空间域函数连续的话,空间域也就是连续的,即随着空间位置的微小变化,其属性 值也将发生微小变化,不会出现像数字高程模型中的悬崖那样的突变值。只有在空间结构和 属性域中恰当地定义了“微小变化”,“连续”的意义才确切; 当空间结构是二维(或更多维)时,坡度——或者称为变化率——不仅取决于特殊的位 置,而且取决于位置所在区域的方向分布(图 3-2)。连续与可微分两个概念之间有逻辑关 系,每个可微函数一定是连续的,但连续函数不一定可微。 图 3-2:某点的坡度取决于位置所在区域的各方向上的可微性 如果空间域函数是可微分的,空间域就是可微分的;行政区划的边界变化是离散的一个 例子,如果目前测得的边界位于 A,而去年这时边界位于 B,但这并不表明 6 个月前边界将 位于 BA 之间的中心,边界具有不连续跃变。 2.1.3 与方向无关的和与方向有关的(各向同性和各向异性) 空间场内部的各种性质是否随方向的变化而发生变化,是空间场的一个重要特征。如果 一个场中的所有性质都与方向无关,则称之为各向同性场(Isotropic Field)。例如旅行时间, 假如从某一个点旅行到另一个点所耗时间只与这两点之间的欧氏几何距离成正比,则从一个 固定点出发,旅行一定时间所能到达的点必然是一个等时圆,如图 3-3-(a)所示。如果某一点 处有一条高速通道,则利用与不利用高速通道所产生的旅行时间是不同的,见图 3-3-(b)。 等时线已标明在图中,图中的双曲线是利用与不利用高速通道的分界线。本例中的旅行时间 与目标点与起点的方位有关,这个场称为各向异性场(Anisotropic Field)
图3-3:在各向同性与各向异性场中的旅行时间面 2.1.4空间自相关 空间自相关是空间场中的数值聚集程度的一种量度。距离近的事物之间的联系性强于距 离远的事物之间的联系性。如果一个空间场中的类似的数值有聚集的倾向,则该空间场就表 现出很强的正空间自相关;如果类似的属性值在空间上有相互排斥的倾向,则表现为负空间 自相关(图3-4)。因此空间自相关描述了某一位置上的属性值与相邻位置上的属性值之间 的关系。 图3-4:强空间正负自相关模式 2.2栅格数据模型 栅格数据模型是基于连续铺盖的,它是将连续空间离散化,即用二维铺盖或划分覆盖整 个连续空间;铺盖可以分为规则的和不规则的,后者可当做拓扑多边形处理,如社会经济 分区、城市街区;铺盖的特征参数有尺寸、形状、方位和间距。对同一现象,也可能有若干 不同尺度、不同聚分性( Aggregation or Subdivisions)的铺盖。在边数从3到N的规则铺盖 ( Regular Tesselations)中,方格、三角形和六角形是空间数据处理中最常用的。三角形是 最基本的不可再分的单元,根据角度和边长的不同,可以取不同的形状,方格、三角形和六 角形可完整地铺满一个平面(图3-5) “空间分析”一章中提及的 orono多边形和TIN属于不规则铺盖
(a) (b) 图 3-3:在各向同性与各向异性场中的旅行时间面 2.1.4 空间自相关 空间自相关是空间场中的数值聚集程度的一种量度。距离近的事物之间的联系性强于距 离远的事物之间的联系性。如果一个空间场中的类似的数值有聚集的倾向,则该空间场就表 现出很强的正空间自相关;如果类似的属性值在空间上有相互排斥的倾向,则表现为负空间 自相关(图 3-4)。因此空间自相关描述了某一位置上的属性值与相邻位置上的属性值之间 的关系。 图 3-4:强空间正负自相关模式 2.2 栅格数据模型 栅格数据模型是基于连续铺盖的,它是将连续空间离散化,即用二维铺盖或划分覆盖整 个连续空间;铺盖可以分为规则的和不规则*的,后者可当做拓扑多边形处理,如社会经济 分区、城市街区;铺盖的特征参数有尺寸、形状、方位和间距。对同一现象,也可能有若干 不同尺度、不同聚分性(Aggregation or Subdivisions)的铺盖。在边数从 3 到 N 的规则铺盖 (Regular Tesselations)中,方格、三角形和六角形是空间数据处理中最常用的。三角形是 最基本的不可再分的单元,根据角度和边长的不同,可以取不同的形状,方格、三角形和六 角形可完整地铺满一个平面(图 3-5)。 * “空间分析”一章中提及的 Voronoi 多边形和 TIN 属于不规则铺盖
图3-5:三角形、方格和六角形划分 基于栅格的空间模型把空间看作像元(Piⅸel)的划分( Tessellation),每个像元都与分 类或者标识所包含的现象的一个记录有关。像元与“栅格”两者都是来自图像处理的内容, 其中单个的图像可以通过扫描每个栅格产生。GIS中栅格数据经常是来自人工和卫星遥感扫 描设备中,以及用于数字化文件的设备中。采用栅格模型的信息系统,通常应用了前面所述 的分层的方法。在每个图层中栅格像元记录了特殊的现象的存在。每个像元的值表明了在已 知类中现象的分类情况(图3-6) 图3-6:栅格数据模型 由于像元具有固定的尺寸和位置,所以栅格趋向于表现在一个“栅格块”中的自然及人 工现象。因此分类之间的界限被迫采用沿着栅格像元的边界线。一个栅格图层中每个像元通 常被分为一个单一的类型。这可能造成对现象的分布的误解,其程度则取决与所研究的相关 的像元的大小。如果像元针对特征而言是非常小的,栅格可以是一个来表现自然现象的边界 随机分布的特别有效的方式,该现象趋于逐渐地彼此结合,而不是简单地划分。如果每个像 元限定为一个类,栅格模型就不能充分地表现一些自然现象的转换属性。除非抽样被降低到 个微观的水平,否则许多数据类事实上都是混合类。模糊的特征通过混合像元,在一个栅 格内可以被有效地表达,其中组成分类通过像元所有组成度量的或者预测的百分比来表示 尽管如此,也应该强调一个栅格的像元仅仅被赋予一个单一的值。 为了GIS数据处理,栅格模型的一个重要的特征就是每个栅格中的像元的位置被预先确 ,所以很容易进行重叠运算以比较不同图层中所存储的特征。由于像元位置是预先确定的, 且是相同的,在一个具体的应用的不同的图层中,每个属性可以从逻辑上或者从算法上与其 它图层中的像元的属性相结合以便产生相应的重叠中一个的属性值。其不同于基于图层的矢 量模型之处,在于图层中的面单元彼此是独立的,直接地比较图层必须作进一步处理以识别
图 3-5:三角形、方格和六角形划分 基于栅格的空间模型把空间看作像元(Pixel)的划分(Tessellation),每个像元都与分 类或者标识所包含的现象的一个记录有关。像元与“栅格”两者都是来自图像处理的内容, 其中单个的图像可以通过扫描每个栅格产生。GIS 中栅格数据经常是来自人工和卫星遥感扫 描设备中,以及用于数字化文件的设备中。采用栅格模型的信息系统,通常应用了前面所述 的分层的方法。在每个图层中栅格像元记录了特殊的现象的存在。每个像元的值表明了在已 知类中现象的分类情况(图 3-6)。 图 3-6:栅格数据模型 由于像元具有固定的尺寸和位置,所以栅格趋向于表现在一个“栅格块”中的自然及人 工现象。因此分类之间的界限被迫采用沿着栅格像元的边界线。一个栅格图层中每个像元通 常被分为一个单一的类型。这可能造成对现象的分布的误解,其程度则取决与所研究的相关 的像元的大小。如果像元针对特征而言是非常小的,栅格可以是一个来表现自然现象的边界 随机分布的特别有效的方式,该现象趋于逐渐地彼此结合,而不是简单地划分。如果每个像 元限定为一个类,栅格模型就不能充分地表现一些自然现象的转换属性。除非抽样被降低到 一个微观的水平,否则许多数据类事实上都是混合类。模糊的特征通过混合像元,在一个栅 格内可以被有效地表达,其中组成分类通过像元所有组成度量的或者预测的百分比来表示。 尽管如此,也应该强调一个栅格的像元仅仅被赋予一个单一的值。 为了 GIS 数据处理,栅格模型的一个重要的特征就是每个栅格中的像元的位置被预先确 定,所以很容易进行重叠运算以比较不同图层中所存储的特征。由于像元位置是预先确定的, 且是相同的,在一个具体的应用的不同的图层中,每个属性可以从逻辑上或者从算法上与其 它图层中的像元的属性相结合以便产生相应的重叠中一个的属性值。其不同于基于图层的矢 量模型之处,在于图层中的面单元彼此是独立的,直接地比较图层必须作进一步处理以识别
重叠的属性。 体元( Voxels):GiS中基于的栅格表示可以被扩展到三维以产生一个体元( Voxel)模 型,其中像元是由长方形,典型是立方体、立体元素所组成。地理数据的一些类型,并不总 是由边界表示的,因为数据值可能与一个属性相关,而该属性随着位置的变化而变化,而且 并不是清楚地理解边界。这类模型的数据的一个比较合适的模型就是体元模型。该模型被 泛地应用于媒体成像,其中它们源于计算机辅助断层(CT)及核磁反应扫描仪。它们很好 地表现渐进的、特殊的位置变化,并适于产生这种变化的剖面图 3.要素模型 3.1欧氏( Euclidean)空间和欧氏空间中的三类地物要素 许多地理现象模型建立的基础就是嵌入( Embed)在一个坐标空间中,在这种坐标空间 中,根据常用的公式就可以测量点之间的距离及方向,这个带坐标的空间模型叫做欧氏空间 它把空间特性转换成实数的元组( Tuples)特性,两维的模型叫做欧氏平面。欧氏空间中 最经常使用的参照系统是笛卡尔坐标系( Cartesian Coordinates),它是由一个固定的、特殊 的点为原点,一对相互垂直且经过原点的线为坐标轴。此外,在某些情况下,也经常采用其 它坐标系统,如极坐标系( Polar Coordinates) 将地理要素嵌入到欧氏空间中,形成了三类地物要素对象,即点对象、线对象和多边形 对象 3.1.1点对象 点是有特定的位置,维数为零的物体,包括: 点实体( Point Entity):用来代表一个实体; 注记点:用于定位注记 内点( Label point):用于记录多边形的属性,存在于多边形内 结点(节点)(Node):表示线的终点和起点 角点( Vertex):表示线段和弧段的内部点 3.1.2线对象 线对象是GIS中非常常用的维度为1的空间组分,表示对象和它们边界的空间属性, 由一系列坐标表示,并有如下特征 实体长度:从起点到终点的总长 弯曲度:用于表示像道路拐弯时弯曲的程度 方向性:水流方向是从上游到下游,公路则有单向与双向之分。 线状实体包括线段、边界、链、弧段、网络等,多边线如图3-7所示
重叠的属性。 体元(Voxels):GIS 中基于的栅格表示可以被扩展到三维以产生一个体元(Voxel)模 型,其中像元是由长方形,典型是立方体、立体元素所组成。地理数据的一些类型,并不总 是由边界表示的,因为数据值可能与一个属性相关,而该属性随着位置的变化而变化,而且 并不是清楚地理解边界。这类模型的数据的一个比较合适的模型就是体元模型。该模型被广 泛地应用于媒体成像,其中它们源于计算机辅助断层(CT)及核磁反应扫描仪。它们很好 地表现渐进的、特殊的位置变化,并适于产生这种变化的剖面图。 3.要素模型 3.1 欧氏(Euclidean)空间和欧氏空间中的三类地物要素 许多地理现象模型建立的基础就是嵌入(Embed)在一个坐标空间中,在这种坐标空间 中,根据常用的公式就可以测量点之间的距离及方向,这个带坐标的空间模型叫做欧氏空间, 它把空间特性转换成实数的元组(Tuples)特性,两维的模型叫做欧氏平面。欧氏空间中, 最经常使用的参照系统是笛卡尔坐标系(Cartesian Coordinates),它是由一个固定的、特殊 的点为原点,一对相互垂直且经过原点的线为坐标轴。此外,在某些情况下,也经常采用其 它坐标系统,如极坐标系(Polar Coordinates)。 将地理要素嵌入到欧氏空间中,形成了三类地物要素对象,即点对象、线对象和多边形 对象。 3.1.1 点对象 点是有特定的位置,维数为零的物体,包括: .点实体(Point Entity):用来代表一个实体; .注记点:用于定位注记; .内点(Label Point):用于记录多边形的属性,存在于多边形内; .结点(节点)(Node):表示线的终点和起点; .角点(Vertex):表示线段和弧段的内部点。 3.1.2 线对象 线对象是 GIS 中非常常用的维度为 1 的空间组分,表示对象和它们边界的空间属性, 由一系列坐标表示,并有如下特征: .实体长度:从起点到终点的总长; .弯曲度:用于表示像道路拐弯时弯曲的程度; .方向性:水流方向是从上游到下游,公路则有单向与双向之分。 线状实体包括线段、边界、链、弧段、网络等,多边线如图 3-7 所示
3.1.3多边形对象 面状实体也称为多边形,是对湖泊、岛屿、地块等一类现象的描述。通常在数据库中由 一封闭曲线加内点来表示。面状实体有如下空间特性: 面积范围 周长 独立性或与其它的地物相邻,如中国及其周边国家; 内岛或锯齿状外形,如岛屿的海岸线封闭所围成的区域等 重叠性与非重叠性,如报纸的销售领域,学校的分区,菜市场的服务范围等都有可能 出现交叉重叠现象,一个城市的各个城区一般说来相邻但不会出现重叠。 在计算几何中,定义了许多不同类型的多边形,如图3-7所示 多边线 简单闭合多边线 凸多边形 星状多边形 图3-7:多边线和多边形 3.2要素模型的基本概念 基于要素的空间模型强调了个体现象,该现象以独立的方式或者以与其它现象之间的关 系的方式来研究。任何现象,无论大小,都可以被确定为一个对象( Object,假设它可以 从概念上与其邻域现象相分离。要素可以由不同的对象所组成,而且它们可以与其它的相分 离的对象有特殊的关系。在一个与土地和财产的拥有者记录有关的应用中,采用的是基于要 素的视点,因为每一个土地块和每一个建筑物必须是不同的,而且必须是唯一标识的并且可 以单个地测量。一个基于要素的观点是适合于已经组织好的边界现象的,尽管并不被限定 因此,这也适合于人为现象的,例如,建筑物、道路、设施和管理区域。一些自然现象,如 湖、河、岛及森林,经常被表现在基于要素的模型中的,因为它们为了某些目的,可以被看 成为离散的现象,但应该记住的是,这样现象的边界随着时间的变化很少是固定的,因此, 在任何时刻,它们的实际的位置定义很少是精确的。 基于要素的空间信息模型把信息空间分解为对象( Object)或实体( Entity)。一个实体 必须符合三个条件 可被识别
3.1.3 多边形对象 面状实体也称为多边形,是对湖泊、岛屿、地块等一类现象的描述。通常在数据库中由 一封闭曲线加内点来表示。面状实体有如下空间特性: .面积范围; .周长; .独立性或与其它的地物相邻,如中国及其周边国家; .内岛或锯齿状外形,如岛屿的海岸线封闭所围成的区域等; .重叠性与非重叠性,如报纸的销售领域,学校的分区,菜市场的服务范围等都有可能 出现交叉重叠现象,一个城市的各个城区一般说来相邻但不会出现重叠。 在计算几何中,定义了许多不同类型的多边形,如图 3-7 所示。 图 3-7:多边线和多边形 3.2 要素模型的基本概念 基于要素的空间模型强调了个体现象,该现象以独立的方式或者以与其它现象之间的关 系的方式来研究。任何现象,无论大小,都可以被确定为一个对象(Object),假设它可以 从概念上与其邻域现象相分离。要素可以由不同的对象所组成,而且它们可以与其它的相分 离的对象有特殊的关系。在一个与土地和财产的拥有者记录有关的应用中,采用的是基于要 素的视点,因为每一个土地块和每一个建筑物必须是不同的,而且必须是唯一标识的并且可 以单个地测量。一个基于要素的观点是适合于已经组织好的边界现象的,尽管并不被限定。 因此,这也适合于人为现象的,例如,建筑物、道路、设施和管理区域。一些自然现象,如 湖、河、岛及森林,经常被表现在基于要素的模型中的,因为它们为了某些目的,可以被看 成为离散的现象,但应该记住的是,这样现象的边界随着时间的变化很少是固定的,因此, 在任何时刻,它们的实际的位置定义很少是精确的。 基于要素的空间信息模型把信息空间分解为对象(Object)或实体(Entity)。一个实体 必须符合三个条件: .可被识别;
重要(与问题相关); 可被描述(有特征)。 而有关实体的特征,可以通过静态属性(如城市名)、动态的行为特征和结构特征来描 述实体。与基于场的模型不同,基于要素的模型把信息空间看作许多对象(城市、集镇、村 庄、区)的集合,而这些对象又具有自己的属性(如人口密度、质心和边界等)。基于要素 的模型中的实体可采用多种维度来定义属性,包括:空间维、时间维、图形维和文本/数字 空间对象之所以称为“空间的”,是因为它们存在于“空间”之中,即所谓“嵌入式空 间”。空间对象的定义取决于嵌入式空间的结构。常用的嵌入式空间类型有:(1)欧氏空间, 它允许在对象之间采用距离和方位的量度,欧氏空间中的对象可以用坐标组的集合来表示; (2)量度空间,它允许在对象之间采用距离量度(但不一定有方向):(3)拓扑空间,它允 许在对象之间进行拓扑关系的描述(不一定有距离和方向):(4)面向集合的空间,它只采 用一般的基于集合的关系,如包含、合并及相交等 1)欧氏平面上的空间对象类型 图3-8表示了在连续的二维欧氏平面上的一种可能的对象继承等级图 空间对象 零维对象点 延伸对象 维对象 二维对象 弧 环 面对象 简单弧 单环 面域对象 域单位对象 图3-8:连续空间对象类型的继承等级 在上图中,具有最高抽象层次的对象是“空间对象”类,它派生为零维的点对象和延伸 对象,延伸对象又可以派生维一维和二维的对象类。一维对象的两个子类:弧和环(Loop) 如果没有相交,则称为简单弧( Simple arc)和简单环( Simple loop)。在二维空间对象类 中,连通的面对象称为面域对象,没有“洞”的简单面域对象称为域单位对象 2)离散欧氏平面上的空间对象 欧氏空间的平面因连续而不可计算,必须离散化后才适合于计算。图3-8中所有的连续 类型的离散形式都存在。图3-9表示了部分离散一维对象继承等级关系。 其中B样条曲线的描述见“空间分析”一章,多边线属于一维的无约束的样条曲线
.重要(与问题相关); .可被描述(有特征)。 而有关实体的特征,可以通过静态属性(如城市名)、动态的行为特征和结构特征来描 述实体。与基于场的模型不同,基于要素的模型把信息空间看作许多对象(城市、集镇、村 庄、区)的集合,而这些对象又具有自己的属性(如人口密度、质心和边界等)。基于要素 的模型中的实体可采用多种维度来定义属性,包括:空间维、时间维、图形维和文本/数字 维。 空间对象之所以称为“空间的”,是因为它们存在于“空间”之中,即所谓“嵌入式空 间”。空间对象的定义取决于嵌入式空间的结构。常用的嵌入式空间类型有:(1)欧氏空间, 它允许在对象之间采用距离和方位的量度,欧氏空间中的对象可以用坐标组的集合来表示; (2)量度空间,它允许在对象之间采用距离量度(但不一定有方向);(3)拓扑空间,它允 许在对象之间进行拓扑关系的描述(不一定有距离和方向);(4)面向集合的空间,它只采 用一般的基于集合的关系,如包含、合并及相交等。 1)欧氏平面上的空间对象类型 图 3-8 表示了在连续的二维欧氏平面上的一种可能的对象继承等级图。 空间对象 零维对象点 延伸对象 一维对象 二维对象 弧 环 简单弧 简单环 面对象 面域对象 域单位对象 图 3-8:连续空间对象类型的继承等级 在上图中,具有最高抽象层次的对象是“空间对象”类,它派生为零维的点对象和延伸 对象,延伸对象又可以派生维一维和二维的对象类。一维对象的两个子类:弧和环(Loop), 如果没有相交,则称为简单弧(Simple Arc)和简单环(Simple Loop)。在二维空间对象类 中,连通的面对象称为面域对象,没有“洞”的简单面域对象称为域单位对象。 2)离散欧氏平面上的空间对象 欧氏空间的平面因连续而不可计算,必须离散化后才适合于计算。图 3-8 中所有的连续 类型的离散形式都存在。图 3-9 表示了部分离散一维对象继承等级关系*。 * 其中 B 样条曲线的描述见“空间分析”一章,多边线属于一维的无约束的样条曲线