第14卷第5期 智能系统学报 Vol.14 No.5 2019年9月 CAAI Transactions on Intelligent Systems Sep.2019 D0:10.11992/tis.201807033 网络出版地址:http:/kns.cnki.net/kcms/detail/23.1538.TP.20181224.1450.009html 模糊直方图模型的运动目标跟踪 修春波2,李欣',巴富珊 (1.天津工业大学电气工程与自动化学院,天津300387,2.天津工业大学电工电能新技术天津市重点实验室, 天津300387) 摘要:为改善跟踪系统对跟踪场景中目标色度和光照变化鲁棒性,提出基于模糊直方图的目标模型建立方 法。首先,在色度论域内定义色度模糊等级,根据模糊隶属度函数建立目标区域模糊直方图,由此降低目标直 方图模型对色度等级阈值的敏感性。然后,利用模糊直方图模型进行反向投影,建立跟踪场景的概率分布图。 最后,利用Camshift方法实现目标的识别、定位与跟踪。仿真实验结果表明:与传统方法相比,采用模糊直方 图模型的跟踪方法对色度漂移等干扰具有更好的适应性,目标在顺光、侧光以及逆光环境下移动时,该方法能 够完成目标的准确定位与跟踪,单帧平均跟踪时间与基本Camshift方法相当,单帧最大跟踪时间小于40ms, 满足电视跟踪等系统实时性要求。 关键词:模糊直方图;目标跟踪:光照变化:色度漂移:反向投影:实时跟踪:隶属度;目标定位 中图分类号:TP391.4文献标志码:A文章编号:1673-4785(2019)05-0939-08 中文引用格式:修春波,李欣,巴富珊.模糊直方图模型的运动目标跟踪.智能系统学报,2019,14(5):939-946. 英文引用格式:XIU Chunbo,LI Xin,BA Fushan..Target tracking based on the fuzzy histogram modelJ..CAAI transactions on in- telligent systems,2019,14(5):939-946. Target tracking based on the fuzzy histogram model XIU Chunbo2,LI Xin',BA Fushan (1.School of Electrical Engineering and Automation,Tianjin Polytechnic University,Tianjin 300387,China;2.Key Laboratory of Advanced Electrical Engineering and Energy Technology,Tianjin Polytechnic University,Tianjin 300387,China) Abstract:To enhance the robustness of the tracking system to the hue drift and illumination variation,a new target model based on the fuzzy histogram is proposed in this paper.First,some fuzzy ranks were defined in the hue domain, and the fuzzy histogram model of the target area is built according to the fuzzy membership degree to reduce the sensib- ility to the hue thresholds.Then,the probability distribution image of the tracking-scene image based on the back-pro- jection of the fuzzy histogram model was built.Finally,the Camshift tracking method was used to perform target recog- nition,location,and tracking.The simulation results show that the method has better adaptability to the interference caused by hue drift than conventional methods.Target tracking can still be completed by the method when the target moves in the illumination-varying condition,such as front,side,and back light.The average tracking computation time of a single frame of the method is similar to that of the basic Camshift method.The maximum tracking computation time of a single frame is less than 40 ms,which can satisfy the real-time request of tracking systems such as a television tracking system. Keywords:fuzzy histogram;target tracking;illumination variation;hue drift;back-projection,real-time tracking,mem- bership degree;target location 收稿日期:2018-07-30.网络出版日期:2018-12-26. 基金项目:天津市自然科学基金项目(18 JCYBJC88300.17JCY. 运动目标的识别与跟踪在军事、安防、工业 BJC18500):天津市高等学校创新团队培养计划项目 生产等领域中有着广泛的应用前景1。实时跟 (TD13-5036). 通信作者:修春波.E-mail:xiuchunbo@tjpu.edu.cn 踪系统对跟踪方法的运算量一般有着较为严苛的
DOI: 10.11992/tis.201807033 网络出版地址: http://kns.cnki.net/kcms/detail/23.1538.TP.20181224.1450.009.html 模糊直方图模型的运动目标跟踪 修春波1,2,李欣1 ,巴富珊1 (1. 天津工业大学 电气工程与自动化学院,天津 300387; 2. 天津工业大学 电工电能新技术天津市重点实验室, 天津 300387) 摘 要:为改善跟踪系统对跟踪场景中目标色度和光照变化鲁棒性,提出基于模糊直方图的目标模型建立方 法。首先,在色度论域内定义色度模糊等级,根据模糊隶属度函数建立目标区域模糊直方图,由此降低目标直 方图模型对色度等级阈值的敏感性。然后,利用模糊直方图模型进行反向投影,建立跟踪场景的概率分布图。 最后,利用 Camshift 方法实现目标的识别、定位与跟踪。仿真实验结果表明:与传统方法相比,采用模糊直方 图模型的跟踪方法对色度漂移等干扰具有更好的适应性,目标在顺光、侧光以及逆光环境下移动时,该方法能 够完成目标的准确定位与跟踪,单帧平均跟踪时间与基本 Camshift 方法相当,单帧最大跟踪时间小于 40 ms, 满足电视跟踪等系统实时性要求。 关键词:模糊直方图;目标跟踪;光照变化;色度漂移;反向投影;实时跟踪;隶属度;目标定位 中图分类号:TP391.4 文献标志码:A 文章编号:1673−4785(2019)05−0939−08 中文引用格式:修春波, 李欣, 巴富珊. 模糊直方图模型的运动目标跟踪 [J]. 智能系统学报, 2019, 14(5): 939–946. 英文引用格式:XIU Chunbo, LI Xin, BA Fushan. Target tracking based on the fuzzy histogram model[J]. CAAI transactions on intelligent systems, 2019, 14(5): 939–946. Target tracking based on the fuzzy histogram model XIU Chunbo1,2 ,LI Xin1 ,BA Fushan1 (1. School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin 300387, China; 2. Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, China) Abstract: To enhance the robustness of the tracking system to the hue drift and illumination variation, a new target model based on the fuzzy histogram is proposed in this paper. First, some fuzzy ranks were defined in the hue domain, and the fuzzy histogram model of the target area is built according to the fuzzy membership degree to reduce the sensibility to the hue thresholds. Then, the probability distribution image of the tracking-scene image based on the back-projection of the fuzzy histogram model was built. Finally, the Camshift tracking method was used to perform target recognition, location, and tracking. The simulation results show that the method has better adaptability to the interference caused by hue drift than conventional methods. Target tracking can still be completed by the method when the target moves in the illumination-varying condition, such as front, side, and back light. The average tracking computation time of a single frame of the method is similar to that of the basic Camshift method. The maximum tracking computation time of a single frame is less than 40 ms, which can satisfy the real-time request of tracking systems such as a television tracking system. Keywords: fuzzy histogram; target tracking; illumination variation; hue drift; back-projection; real-time tracking; membership degree; target location 运动目标的识别与跟踪在军事、安防、工业 生产等领域中有着广泛的应用前景[1-3]。实时跟 踪系统对跟踪方法的运算量一般有着较为严苛的 收稿日期:2018−07−30. 网络出版日期:2018−12−26. 基金项目:天津市自然科学基金项目 (18JCYBJC88300,17JCYBJC18500);天津市高等学校创新团队培养计划项目 (TD13-5036). 通信作者:修春波. E-mail:xiuchunbo@tjpu.edu.cn. 第 14 卷第 5 期 智 能 系 统 学 报 Vol.14 No.5 2019 年 9 月 CAAI Transactions on Intelligent Systems Sep. 2019
·940· 智能系统学报 第14卷 要求”。但过于简化的跟踪方法对目标特征描 (1)所建立的直方图模型是采用精确集合的方法 述不够充分,造成难以适应复杂场景下跟踪准确 进行色度等级的划分。因此光照变化等干扰,会 性的要求。尤其当目标所处场景的光照不稳定 造成目标直方图模型不稳定,严重影响目标跟踪 时,跟踪系统对跟踪方法的适应能力就会提出更 方法的性能。 高要求go。在现有跟踪方法中,Meanshift算法由 模糊集合能够通过弱化集合划分阈值的方式 于具有运算量小,计算速度快等优点而得到较快 实现不确定知识表示,从而可改善模型描述的鲁 发展。在Meanshift算法基础上所提出的Cam- 棒性,因此提出了基于模糊隶属度划分的目标直 shift改进算法能够适应目标缩放变化等需求,改 方图模型表示方法。 善了跟踪性能2。为了提高跟踪方法对复杂场 选择梯形色度隶属度函数,则第k个色度模 景的适应能力,通过融合多种辅助特征信息、抑 糊等级的隶属度函数()描述为 制背景信息或突出目标显著性信息等方式,又提 h-hk-2 hk-1-hk-2' hk-2hk+l 基于上述模糊划分的色度模糊直方图模型可 方法均是利用目标的色度(Hue)直方图模型来 描述目标的基本特征,利用反向投影实现目标 表示为={qn},u=1,2,…,m,其中9为 的定位跟踪21。因此目标直方图模型的稳定 9= (2) 性和准确性直接影响着跟踪性能。现有Cam- shif等跟踪方法采用精确集合的定义选取划分 式(2)所建立的直方图模型由于相邻色度等 阈值2,而实际跟踪过程中,由于光照变化等 级之间没有明显的界限,弱化了色度等级阈值对 干扰因素会造成场景图像的色度产生一定的漂 直方图模型的影响,从而可有效抑制色度漂移和 移。从而引起目标直方图模型的不稳定,降低 光照变化产生的干扰,提高目标直方图模型的稳 了目标跟踪的性能。 定性。 为了提高直方图模型对色度漂移的抑制能 2基于模糊直方图模型的跟踪方法 力,结合模糊集合理论,提出了目标模糊直方图 模型建立方法,弱化了色度等级划分阈值的作 利用式(2)的目标模糊直方图进行反向投影, 用,根据目标的模糊直方图定义了新的反向投影 可建立跟踪场景的概率分布图。由于采用模糊直 方式,实现目标定位与跟踪,有效抑制光照变化 方图模型,因此反向投影方式与传统方法有所不 等干扰因素对目标跟踪性能的影响,提高跟踪方 同。设跟踪场景中像素点(x,y)的色度值为(x 法的适应能力。 ,根据式(2)模糊直方图模型定义反向投影概率 分布图中该点的像素灰度值px,y)为 1模糊直方图模型 ∑-,X255 目标直方图模型由于具有旋转不变性及计算 p(x,y)=INT = (3) 量小等优点,在许多跟踪方法中得到有效应用。 max{qj=1,2,…,m u.[h(x,y)] =1 通常选择H$V颜色空间中H(色度)分量建立直 式中NTO为取整函数。根据色度模糊等级的划 方图模型。设色度值H的定义域为[0,180],色度 分,同一色度值隶属于不同的色度等级,因此,式 等级划分为m级,0-h1为第1个等级,h~h为第 (3)采用加权平均方式求得场景图像反向投影概 j个等级,hm1~180为第m个等级,目标区域中像 率分布图中各像素的灰度值,灰度值越大,表示 素点i的坐标为(x,),其色度等级值表示为b(x, 该点为目标区域中的点的概率越大。基于式(3) y,这样目标色度直方图模型可建立为q'={q'}, 的反向投影方式,目标跟踪的具体流程可描述为: l=1,2,…,m: 1)选定跟踪目标区域,利用式(2)建立目标区 2aW- 域的色度模糊直方图模型; (1) 2)获取当前跟踪场景,利用式(3)求取当前跟 式中s为目标区域中所包含像素点的数量。式 踪场景的反向投影概率分布图;
要求[4-7]。但过于简化的跟踪方法对目标特征描 述不够充分,造成难以适应复杂场景下跟踪准确 性的要求。尤其当目标所处场景的光照不稳定 时,跟踪系统对跟踪方法的适应能力就会提出更 高要求[8-10]。在现有跟踪方法中,Meanshift 算法由 于具有运算量小,计算速度快等优点而得到较快 发展[11]。在 Meanshift 算法基础上所提出的 Camshift 改进算法能够适应目标缩放变化等需求,改 善了跟踪性能[12-13]。为了提高跟踪方法对复杂场 景的适应能力,通过融合多种辅助特征信息、抑 制背景信息或突出目标显著性信息等方式,又提 出了一系列的改进跟踪方法[14-16] ,如基于显著性 加权直方图模型[17] 及融合边缘纹理特征的直方 图模型[18] 的跟踪方法等。 Meanshift 算法、Camshift 算法以及各种改进 方法均是利用目标的色度 (Hue) 直方图模型来 描述目标的基本特征,利用反向投影实现目标 的定位跟踪[12-18]。因此目标直方图模型的稳定 性和准确性直接影响着跟踪性能。现有 Camshift 等跟踪方法采用精确集合的定义选取划分 阈值[12-18] ,而实际跟踪过程中,由于光照变化等 干扰因素会造成场景图像的色度产生一定的漂 移。从而引起目标直方图模型的不稳定,降低 了目标跟踪的性能。 为了提高直方图模型对色度漂移的抑制能 力,结合模糊集合理论,提出了目标模糊直方图 模型建立方法,弱化了色度等级划分阈值的作 用,根据目标的模糊直方图定义了新的反向投影 方式,实现目标定位与跟踪,有效抑制光照变化 等干扰因素对目标跟踪性能的影响,提高跟踪方 法的适应能力。 1 模糊直方图模型 u = 1,2,··· ,m 目标直方图模型由于具有旋转不变性及计算 量小等优点,在许多跟踪方法中得到有效应用。 通常选择 HSV 颜色空间中 H(色度) 分量建立直 方图模型。设色度值 H 的定义域为 [0,180],色度 等级划分为 m 级,0~h1 为第 1 个等级,hj-1~hj 为第 j 个等级,hm-1~ 180 为第 m 个等级,目标区域中像 素点 i 的坐标为 (xi,yi ),其色度等级值表示为 b(xi, yi ),这样目标色度直方图模型可建立为 qʹ={qʹu}, : q ′ u = ∑s i=1 δ[b(xi , yi)−u] (1) 式中 s 为目标区域中所包含像素点的数量。式 (1) 所建立的直方图模型是采用精确集合的方法 进行色度等级的划分。因此光照变化等干扰,会 造成目标直方图模型不稳定,严重影响目标跟踪 方法的性能。 模糊集合能够通过弱化集合划分阈值的方式 实现不确定知识表示,从而可改善模型描述的鲁 棒性,因此提出了基于模糊隶属度划分的目标直 方图模型表示方法。 选择梯形色度隶属度函数,则第 k 个色度模 糊等级的隶属度函数 μk (h) 描述为 µk(h) = h−hk−2 hk−1 −hk−2 , hk−2 hk+1 u = 1,2,··· ,m 基于上述模糊划分的色度模糊直方图模型可 表示为 q={qu}, ,其中 qu 为 qu = ∑s i=1 µuh(xi , yi) (2) 式 (2) 所建立的直方图模型由于相邻色度等 级之间没有明显的界限,弱化了色度等级阈值对 直方图模型的影响,从而可有效抑制色度漂移和 光照变化产生的干扰,提高目标直方图模型的稳 定性。 2 基于模糊直方图模型的跟踪方法 利用式 (2) 的目标模糊直方图进行反向投影, 可建立跟踪场景的概率分布图。由于采用模糊直 方图模型,因此反向投影方式与传统方法有所不 同。设跟踪场景中像素点 (x,y) 的色度值为 h(x, y),根据式 (2) 模糊直方图模型定义反向投影概率 分布图中该点的像素灰度值 p(x,y) 为 p(x, y) = INT ∑m u=1 µuh(x, y)· qu ×255 max{qj | j = 1,2,··· ,m} ∑m u=1 µu[h(x, y)] (3) 式中 INT() 为取整函数。根据色度模糊等级的划 分,同一色度值隶属于不同的色度等级,因此,式 (3) 采用加权平均方式求得场景图像反向投影概 率分布图中各像素的灰度值,灰度值越大,表示 该点为目标区域中的点的概率越大。基于式 (3) 的反向投影方式,目标跟踪的具体流程可描述为: 1) 选定跟踪目标区域,利用式 (2) 建立目标区 域的色度模糊直方图模型; 2) 获取当前跟踪场景,利用式 (3) 求取当前跟 踪场景的反向投影概率分布图; ·940· 智 能 系 统 学 报 第 14 卷
第5期 修春波,等:模糊直方图模型的运动目标跟踪 ·941· 3)根据场景反向投影概率分布图中各像素点 的灰度值,求取跟踪搜索窗的质心坐标(x,),即 ∑xpx,0 Xc= (a)场景1 b)场景2 ∑W 图1不同采样时刻场景 ye= Fig.1 Scenes sampled at different times ∑pxy 由于采样差异,两个场景图像中存在微小的 4)自适应调整跟踪搜索窗的边长,即 色度差异。场景中白框内的区域设定为目标。将 色度区间均匀分为12个等级,即m=12,采用精确 1=2 px,y)/256 集合划分方式建立两帧场景中目标的直方图模 5)平移跟踪搜索窗的中心至质心位置,并重 型,如图2所示。 复3)5),直到移动距离小于设定阈值: ×10时 3 ×10 3 6)更新跟踪目标的长L、宽W及方向角O,即 2 A+VB2+C2 L= 1 乘1 2 0 50100150 50100150 A-VB2+C2 W=1 H值 H值 2 (a)场景1 (b)场景2 1 B 0=arctan C 图2不同采样时刻场景图中目标直方图 Fig.2 Target histograms in the scenes sampled at differ- 其中: ent times ∑pxx2+y) 由图2可见,场景1中的目标直方图与场景2 I.V A= -(x+y) 中的目标直方图相比,二者有明显差异。这是由 于色度等级划分阈值附近的色度值发生了微弱的 ∑p, 漂移,从而导致不同时刻同一目标的直方图模型 差异很大。分别采用图2中的两个直方图模型进 B=2 ∑px,y 行反向投影,得到图1中两个场景的概率分布图 如图3和图4所示。 ∑px-y) C= ∑P -(2-y2) 7)返回1),根据新确定的目标区域重建目标 模糊直方图模型,对下一帧场景图像进行定位 跟踪。 (a)场景1 b)场景2 跟踪方法中采用模糊集合实现色度等级的划 图3。基于场景1的直方图所得反向投影 分,并利用加权平均的解模糊方法建立了场景图 Fig.3 Projection images based on the histogram in scene 1 像的反向投影概率分布图,可有效抑制光照变化 和色度漂移等干扰因素对目标模型的影响。 3实验结果分析 3.1色度漂移直方图模型比较 (a)场景1 b)场景2 图1为相同视角下相邻采样间隔得到的两帧 图4基于场景2的直方图所得反向投影 场景图像。 Fig.4 Projection images based on the histogram in scene 2
3) 根据场景反向投影概率分布图中各像素点 的灰度值,求取跟踪搜索窗的质心坐标 (xc,yc ),即 xc = ∑ x,y x · p(x, y) ∑ x,y p(x, y) yc = ∑ x,y y · p(x, y) ∑ x,y p(x, y) 4) 自适应调整跟踪搜索窗的边长,即 l = 2 √∑ x,y p(x, y)/256 5) 平移跟踪搜索窗的中心至质心位置,并重 复 3)~5),直到移动距离小于设定阈值; 6) 更新跟踪目标的长 L、宽 W 及方向角 θ,即 L = √ A+ √ B2 +C2 2 W = √ A− √ B2 +C2 2 θ = 1 2 arctan B C 其中: A = ∑ x,y p(x, y)(x 2 +y 2 ) ∑ x,y p(x, y) −(x 2 c +y 2 c ) B = 2 ∑ x,y xyp(x, y) ∑ x,y p(x, y) − xcyc C = ∑ x,y p(x, y)(x 2 −y 2 ) ∑ x,y p(x, y) −(x 2 c −y 2 c ) 7) 返回 1),根据新确定的目标区域重建目标 模糊直方图模型,对下一帧场景图像进行定位 跟踪。 跟踪方法中采用模糊集合实现色度等级的划 分,并利用加权平均的解模糊方法建立了场景图 像的反向投影概率分布图,可有效抑制光照变化 和色度漂移等干扰因素对目标模型的影响。 3 实验结果分析 3.1 色度漂移直方图模型比较 图 1 为相同视角下相邻采样间隔得到的两帧 场景图像。 (a) 场景1 (b) 场景2 图 1 不同采样时刻场景 Fig. 1 Scenes sampled at different times 由于采样差异,两个场景图像中存在微小的 色度差异。场景中白框内的区域设定为目标。将 色度区间均匀分为 12 个等级,即 m=12,采用精确 集合划分方式建立两帧场景中目标的直方图模 型,如图 2 所示。 50 100 150 H 值 2 1 0 像素点的数量/个 (a) 场景1 50 100 150 H 值 2 1 0 像素点的数量/个 (b) 场景2 3 3 图 2 不同采样时刻场景图中目标直方图 Fig. 2 Target histograms in the scenes sampled at different times 由图 2 可见,场景 1 中的目标直方图与场景 2 中的目标直方图相比,二者有明显差异。这是由 于色度等级划分阈值附近的色度值发生了微弱的 漂移,从而导致不同时刻同一目标的直方图模型 差异很大。分别采用图 2 中的两个直方图模型进 行反向投影,得到图 1 中两个场景的概率分布图 如图 3 和图 4 所示。 (a) 场景1 (b) 场景2 图 3 基于场景 1 的直方图所得反向投影 Fig. 3 Projection images based on the histogram in scene 1 (a) 场景1 (b) 场景2 图 4 基于场景 2 的直方图所得反向投影 Fig. 4 Projection images based on the histogram in scene 2 第 5 期 修春波,等:模糊直方图模型的运动目标跟踪 ·941·
·942· 智能系统学报 第14卷 图3和图4中越白的区域其灰度值越大,表 地从场景图像中显现出来,有利于提高目标定位 示属于目标的概率越大。从结果可见,由于同一 的准确性。 目标在不同采样时刻的直方图模型存在明显差 异,因此利用场景中的目标直方图模型进行反向 投影,目标区域具有较大概率值,而利用非场景 中目标直方图模型进行反向投影,目标区域的概 率值明显降低,容易造成目标定位不准确,甚至 定位错误。在跟踪算法中,均采用前一帧场景中 (a)场景1 (b)场景2 目标的直方图对当前场景进行反向投影,因此容 易造成跟踪不稳定,甚至跟踪失败。 图7基于场景2的目标模糊直方图所得反向投影 Fig.7 Projection images based on the target fuzzy histo- 图5给出了基于模糊划分的两帧图像中目标 gram in scene 2 区域的模糊直方图模型。 3.2跟踪实验结果 ×104 3 采用传统直方图模型、显著性直方图模型刀 多特征融合直方图模型1以及本文方法对不同 光照情况下的目标进行对比跟踪实验。 0 501001502000 50100150200 实验一对PETS2001目标跟踪测试库中 H值 H值 (a场景1 (b)场景2 Camera2.mov视频中的车辆目标进行跟踪,视频 图5不同采样时刻场景图中目标模糊直方图 光照稳定,目标明显,跟踪情况较为简单。上述 Fig.5 Target fuzzy histograms in the scenes samples at 4种跟踪方法所得跟踪结果如图8~11所示。 different times 由图5可见,采用模糊划分建立目标区域的 直方图模型时,两个场景中目标直方图模型的像 素点均集中在相同的4个等级中,且两个直方图 模型差异不大。这是由于色度等级采用模糊划 (a)第10帧 (b)第31帧 (c)第52帧 分,弱化了划分阈值的作用,当色度在小范围内 发生漂移时,对直方图模型的影响并不大,提高 了所建直方图模型的稳定性。 采用图5中的两个直方图模型进行反向投 (d第73帧 (e)第94帧 (①第115帧 影,分别建立两个场景的概率分布图如图6和 图8传统直方图模型跟踪效果 图7所示。 Fig.8 Tracking result based on the traditionsl histogram model (a)第10帧 (b)第31帧 (c)第52帧 (a)场景1 (b)场景2 图6基于场景1的目标模糊直方图所得反向投影 Fig.6 Projection images based on the target fuzzy histo- gram in scene 1 从图6和图7的反向投影概率分布图可见 (d)第73帧 (e)第94帧 ()第115帧 由于两个场景中目标的直方图模型相似,因此两 图9显著性直方图模型跟踪效果 个场景中的目标区的像素点都具有较大的概率 Fig.9 Tracking result based on the saliency histogram 值,即像素点的灰度值较大,这样目标能够很好 model
图 3 和图 4 中越白的区域其灰度值越大,表 示属于目标的概率越大。从结果可见,由于同一 目标在不同采样时刻的直方图模型存在明显差 异,因此利用场景中的目标直方图模型进行反向 投影,目标区域具有较大概率值,而利用非场景 中目标直方图模型进行反向投影,目标区域的概 率值明显降低,容易造成目标定位不准确,甚至 定位错误。在跟踪算法中,均采用前一帧场景中 目标的直方图对当前场景进行反向投影,因此容 易造成跟踪不稳定,甚至跟踪失败。 图 5 给出了基于模糊划分的两帧图像中目标 区域的模糊直方图模型。 50 100 150 200 H 值 2 1 0 像素点的数量/个 (a) 场景1 ×104 3 50 100 200 ×104 150 H 值 2 1 0 像素点的数量/个 (b) 场景2 3 图 5 不同采样时刻场景图中目标模糊直方图 Fig. 5 Target fuzzy histograms in the scenes samples at different times 由图 5 可见,采用模糊划分建立目标区域的 直方图模型时,两个场景中目标直方图模型的像 素点均集中在相同的 4 个等级中,且两个直方图 模型差异不大。这是由于色度等级采用模糊划 分,弱化了划分阈值的作用,当色度在小范围内 发生漂移时,对直方图模型的影响并不大,提高 了所建直方图模型的稳定性。 采用图 5 中的两个直方图模型进行反向投 影,分别建立两个场景的概率分布图如图 6 和 图 7 所示。 (a) 场景1 (b) 场景2 图 6 基于场景 1 的目标模糊直方图所得反向投影 Fig. 6 Projection images based on the target fuzzy histogram in scene 1 从图 6 和图 7 的反向投影概率分布图可见, 由于两个场景中目标的直方图模型相似,因此两 个场景中的目标区的像素点都具有较大的概率 值,即像素点的灰度值较大,这样目标能够很好 地从场景图像中显现出来,有利于提高目标定位 的准确性。 (a) 场景1 (b) 场景2 图 7 基于场景 2 的目标模糊直方图所得反向投影 Fig. 7 Projection images based on the target fuzzy histogram in scene 2 3.2 跟踪实验结果 采用传统直方图模型、显著性直方图模型[17] 、 多特征融合直方图模型[18] 以及本文方法对不同 光照情况下的目标进行对比跟踪实验。 实验一 对 PETS2001 目标跟踪测试库中 Camera2.mov 视频中的车辆目标进行跟踪,视频 光照稳定,目标明显,跟踪情况较为简单。上述 4 种跟踪方法所得跟踪结果如图 8~11 所示。 (a) 第10帧 (b) 第31帧 (c) 第52帧 (d) 第73帧 (e) 第94帧 (f) 第115帧 图 8 传统直方图模型跟踪效果 Fig. 8 Tracking result based on the traditionsl histogram model (a) 第10帧 (b) 第31帧 (c) 第52帧 (d) 第73帧 (e) 第94帧 (f) 第115帧 图 9 显著性直方图模型跟踪效果 Fig. 9 Tracking result based on the saliency histogram model ·942· 智 能 系 统 学 报 第 14 卷
第5期 修春波,等:模糊直方图模型的运动目标跟踪 ·943· (d第366帧 (e)第439帧 (①第539帧 (a)第10帧 (b)第31帧 (c)第52帧 图13显著性直方图模型跟踪效果 Fig.13 Tracking result based on the saliency histogram model (d)第73帧 (e)第94帧 (①第115帧 图10多特征融合直方图模型跟踪效果 Fig.10 Tracking result based on multiple features fusion (a)第218帧 (b)第267帧 (c)第305帧 histogram model (d第366帧 (e)第439帧 ()第539帧 (a)第10帧 (b)第31帧 (c)第52帧 图14多特征融合直方图模型跟踪效果 Fig.14 Tracking result based on multiple features fusion histogram model (d)第73帧 (e)第94帧 ()第115帧 图11模糊直方图模型跟踪效果 (a)第218帧 (b)第267帧 (c)第305帧 Fig.11 Tracking result based on fuzzy histogram model 从跟踪实验结果可见,由于目标所处场景光 照稳定,目标色度漂移不明显,目标与其周围背 景的颜色也有较明显的差异,因此跟踪情况较为 (d第366帧 (e)第439帧 ()第539帧 简单。上述各种跟踪方法均可较为准确地完成目 标跟踪任务。 图15模糊直方图模型跟踪效果 Fig.15 Tracking result based on fuzzy histogram model 实验二选择Visual Tracker Benchmark跟踪 视频库中David序列图像中的人体目标进行跟 由跟踪结果可见,跟踪过程中David从光线 踪。该跟踪场景中运动目标的光照由暗到亮变化 阴暗的房间走到明亮的房间,行走过程中目标由 显著,色度漂移明显,目标跟踪难度增大。图12~15 暗变亮,色度发生很大的变化,传统直方图模型 给出了上述4种跟踪方法所得跟踪结果。 无法适应强光照变化的干扰,很快导致跟踪失 败。显著性直方图模型及多特征直方图模型方法 利用所结合的辅助特征能够在一定程度上改善跟 踪方法的适应能力,但当光照变化激烈时,所融 (a)第218帧 (b)第267帧 (c)第305帧 合的特征也会受到严重干扰而变得不稳定,最终 无法完成跟踪任务。本文采用模糊直方图模型对 目标进行描述,提高了目标模型的稳定性,对跟 踪过程中的色度漂移能够起到有效抑制,因此即 (d第366帧 (e)第439帧 ()第539帧 使在光照发生明显变化时,仍然能够保证跟踪结 图12传统直方图模型跟踪效果 果的鲁棒性。 Fig.12 Tracking result based on the traditional histogram 实验三对实际光照变化复杂的运动目标进 model 行跟踪实验,目标运动过程中分别处于顺光、侧 光以及逆光等光照状态下,目标区的色度变化明 显,准确定位难度较大。上述各跟踪方法的跟踪 (a)第218帧 (b)第267帧 (c)第305帧 结果如图16~19所示
(a) 第10帧 (b) 第31帧 (c) 第52帧 (d) 第73帧 (e) 第94帧 (f) 第115帧 图 10 多特征融合直方图模型跟踪效果 Fig. 10 Tracking result based on multiple features fusion histogram model (a) 第10帧 (b) 第31帧 (c) 第52帧 (d) 第73帧 (e) 第94帧 (f) 第115帧 图 11 模糊直方图模型跟踪效果 Fig. 11 Tracking result based on fuzzy histogram model 从跟踪实验结果可见,由于目标所处场景光 照稳定,目标色度漂移不明显,目标与其周围背 景的颜色也有较明显的差异,因此跟踪情况较为 简单。上述各种跟踪方法均可较为准确地完成目 标跟踪任务。 实验二 选择 Visual Tracker Benchmark 跟踪 视频库中 David 序列图像中的人体目标进行跟 踪。该跟踪场景中运动目标的光照由暗到亮变化 显著,色度漂移明显,目标跟踪难度增大。图 12~15 给出了上述 4 种跟踪方法所得跟踪结果。 (a) 第218帧 (b) 第267帧 (c) 第305帧 (d) 第366帧 (e) 第439帧 (f) 第539帧 图 12 传统直方图模型跟踪效果 Fig. 12 Tracking result based on the traditional histogram model (d) 第366帧 (e) 第439帧 (f) 第539帧 图 13 显著性直方图模型跟踪效果 Fig. 13 Tracking result based on the saliency histogram model (a) 第218帧 (b) 第267帧 (c) 第305帧 (d) 第366帧 (e) 第439帧 (f) 第539帧 图 14 多特征融合直方图模型跟踪效果 Fig. 14 Tracking result based on multiple features fusion histogram model (a) 第218帧 (b) 第267帧 (c) 第305帧 (d) 第366帧 (e) 第439帧 (f) 第539帧 图 15 模糊直方图模型跟踪效果 Fig. 15 Tracking result based on fuzzy histogram model 由跟踪结果可见,跟踪过程中 David 从光线 阴暗的房间走到明亮的房间,行走过程中目标由 暗变亮,色度发生很大的变化,传统直方图模型 无法适应强光照变化的干扰,很快导致跟踪失 败。显著性直方图模型及多特征直方图模型方法 利用所结合的辅助特征能够在一定程度上改善跟 踪方法的适应能力,但当光照变化激烈时,所融 合的特征也会受到严重干扰而变得不稳定,最终 无法完成跟踪任务。本文采用模糊直方图模型对 目标进行描述,提高了目标模型的稳定性,对跟 踪过程中的色度漂移能够起到有效抑制,因此即 使在光照发生明显变化时,仍然能够保证跟踪结 果的鲁棒性。 实验三 对实际光照变化复杂的运动目标进 行跟踪实验,目标运动过程中分别处于顺光、侧 光以及逆光等光照状态下,目标区的色度变化明 显,准确定位难度较大。上述各跟踪方法的跟踪 (a) 第218帧 (b) 第267帧 (c) 第305帧 结果如图 16~19 所示。 第 5 期 修春波,等:模糊直方图模型的运动目标跟踪 ·943·
·944· 智能系统学报 第14卷 由于目标运动过程中光照变化较大,因此目 标区的色度变化明显,由图16可见,传统直方图 模型对光照变化十分敏感,目标从侧光变为逆光 (a)第33帧 (b)第73帧 (c)第183帧 的过程中,目标定位错误,造成跟踪失败。在图17 中,由于目标处于不同的光照条件下,目标的显 著性色度信息因为色度漂移也会变得不稳定,因 此导致跟踪效果不够理想,最终无法完成目标全 过程的跟踪。在图18中,多特征融合直方图模型 (d)第218帧 (e)第315帧 ()第364帧 所融合的辅助特征能够在一定程度上改善目标定 图16传统直方图模型跟踪效果 位的准确性,但当光照变化严重时,辅助特征也 Fig.16 Tracking result based on the traditional histogram model 会发生不稳定变化,导致最终目标丢失。由图19 可见,本文方法对色度化具有较好的适应能力, 模糊直方图对光照变化引起的色度漂移具有良好 的鲁棒性,通过及时更新目标模型,跟踪方法能 够完成目标在顺光、侧光以及逆光下的跟踪。 (a)第33帧 (b)第73帧 (c)第183帧 3.3性能分析 实验一、二、三的结果给出了跟踪方法的定 位性能,除此之外,计算速度也是评价跟踪方法 性能的主要指标。实验中有的跟踪方法无法完成 (d第218帧 (e)第315帧 ()第364帧 全过程跟踪,因此本文给出了有效跟踪时单帧平 均跟踪时间及最大跟踪时间,如表1所示。 图17显著性直方图模型跟踪效果 Fig.17 Tracking result based on the saliency histogram 表1单帧跟踪对比时间 model Table 1 Tracking time of the single frame ms 运算 传统 显著性 多特征融 本文 实验 时间 直方图 直方图 合直方图 方法 平均值 10.3 13.4 18.2 10.8 (a)第33帧 (b)第73帧 (c)第183帧 最大值 10.7 14.9 22.5 11.3 平均值 10.2 14.5 17.3 10.6 最大值 11.7 15.9 19.1 12.6 平均值 20.4 26.4 29.2 22.2 (d第218帧 (e)第315帧 ()第364帧 最大值 27.6 36.7 40.8 32.4 图18多特征融合直方图模型跟踪效果 Fig.18 Tracking result based on multiple features fusion 由表1可见:传统直方图模型建立简单,运算 histogram model 量最小;基于显著性直方图模型由于需要计算背 景与目标信息的差异,因此建模所需计算量有所 增加;多特征融合直方图模型由于需要提取边 缘、纹理等辅助特征,因此建模过程中计算量增 加较多。而本文方法在建立直方图模型时仅是色 (a)第33帧 (b)第73帧 (c)第183帧 度等级划分方式有所不同,因此模型建立以及目 标定位过程中所涉及的计算量与基本Camshift方 法相当,跟踪过程中单帧最大运算时间小于40ms, 满足电视跟踪等系统的实时性要求。 (d)第218帧 (e)第315帧 (f)第364帧 4结束语 图19模糊直方图模型跟踪效果 Fig.19 Tracking result based on fuzzy histogram model 针对跟踪场景中光照不稳定造成目标色度漂
(a)第33帧 (b)第73帧 (c)第183帧 (d)第218帧 (e)第315帧 (f)第364帧 图 16 传统直方图模型跟踪效果 Fig. 16 Tracking result based on the traditional histogram model (a)第33帧 (b)第73帧 (c)第183帧 (d)第218帧 (e)第315帧 (f)第364帧 图 17 显著性直方图模型跟踪效果 Fig. 17 Tracking result based on the saliency histogram model (a)第33帧 (b)第73帧 (c)第183帧 (d)第218帧 (e)第315帧 (f)第364帧 图 18 多特征融合直方图模型跟踪效果 Fig. 18 Tracking result based on multiple features fusion histogram model (a)第33帧 (b)第73帧 (c)第183帧 (d)第218帧 (e)第315帧 (f)第364帧 图 19 模糊直方图模型跟踪效果 Fig. 19 Tracking result based on fuzzy histogram model 由于目标运动过程中光照变化较大,因此目 标区的色度变化明显,由图 16 可见,传统直方图 模型对光照变化十分敏感,目标从侧光变为逆光 的过程中,目标定位错误,造成跟踪失败。在图 17 中,由于目标处于不同的光照条件下,目标的显 著性色度信息因为色度漂移也会变得不稳定,因 此导致跟踪效果不够理想,最终无法完成目标全 过程的跟踪。在图 18 中,多特征融合直方图模型 所融合的辅助特征能够在一定程度上改善目标定 位的准确性,但当光照变化严重时,辅助特征也 会发生不稳定变化,导致最终目标丢失。由图 19 可见,本文方法对色度化具有较好的适应能力, 模糊直方图对光照变化引起的色度漂移具有良好 的鲁棒性,通过及时更新目标模型,跟踪方法能 够完成目标在顺光、侧光以及逆光下的跟踪。 3.3 性能分析 实验一、二、三的结果给出了跟踪方法的定 位性能,除此之外,计算速度也是评价跟踪方法 性能的主要指标。实验中有的跟踪方法无法完成 全过程跟踪,因此本文给出了有效跟踪时单帧平 均跟踪时间及最大跟踪时间,如表 1 所示。 表 1 单帧跟踪对比时间 Table 1 Tracking time of the single frame ms 实验 运算 时间 传统 直方图 显著性 直方图 多特征融 合直方图 本文 方法 一 平均值 10.3 13.4 18.2 10.8 最大值 10.7 14.9 22.5 11.3 二 平均值 10.2 14.5 17.3 10.6 最大值 11.7 15.9 19.1 12.6 三 平均值 20.4 26.4 29.2 22.2 最大值 27.6 36.7 40.8 32.4 由表 1 可见:传统直方图模型建立简单,运算 量最小;基于显著性直方图模型由于需要计算背 景与目标信息的差异,因此建模所需计算量有所 增加;多特征融合直方图模型由于需要提取边 缘、纹理等辅助特征,因此建模过程中计算量增 加较多。而本文方法在建立直方图模型时仅是色 度等级划分方式有所不同,因此模型建立以及目 标定位过程中所涉及的计算量与基本 Camshift 方 法相当,跟踪过程中单帧最大运算时间小于 40 ms, 满足电视跟踪等系统的实时性要求。 4 结束语 针对跟踪场景中光照不稳定造成目标色度漂 ·944· 智 能 系 统 学 报 第 14 卷
第5期 修春波,等:模糊直方图模型的运动目标跟踪 ·945· 移,从而影响跟踪性能的问题,提出了基于模糊 YU Lei,XIA Yeru,YANG Liangjie.A target tracking al- 直方图模型的目标跟踪方法,采用模糊划分色度 gorithm for the improved understanding,diagnosing and 等级的方式建立目标直方图模型,弱化了色度划 tracking system[J].Applied science and technology,2018, 分阈值对直方图模型的影响,降低了目标模型对 45(4):76-81. 光照变化等干扰的敏感性,提高了跟踪方法的适 [8]YIN Minghao,ZHANG Jin,SUN Hongguang,et al.Multi- 应性。跟踪实验结果表明,在光照变化明显等情 cue-based CamShift guided particle filter tracking[J].Ex- 况下,与传统跟踪方法相比,该方法具有更好的 pert systems with applications,2011,38(5):6313-6318. 跟踪性能,能够完成在不同光照条件下的目标跟 [9]HUANG Danchi,LI Lijuan.Face tracking algorithm based 踪,且目标定位与跟踪所需计算量较小,运算时 on improved Camshift and surf algorithm[J].Journal of 间满足实时性的要求。 computational information systems,2015,11(3):893-901. [10]HSIA C H.LIOU Y J.CHIANG J S.Directional predic- 参考文献: tion camshift algorithm based on adaptive search pattern [I]QU Shiru,LIU Ningning.Face detection and tracking for moving object tracking[J].Journal of real-time image method based on SMQT and CAMSHIFTIJ].Journal of processing,2016,12(1):183-195. computational information systems,2015,11(14): [1l]修春波,卢少磊,任晓.基于微分信息融合的Mean 5153-5162 Shit改进跟踪算法[).系统工程与电子技术,2014, [2]黄晋英,宋国浩,兰艳亭,等.交比不变的Camshift跟踪 36(5):10041009. 方法).光学精密工程,2016,24(4:945-953 XIU Chunbo,LU Shaolei,REN Xiao.Improved mean HUANG Jinying,SONG Guohao,LAN Yanting,et al. shift tracking algorithm based on differential Camshift tracking based on constant cross ratio[J].Optics information[J].Systems engineering and electronics, and precision engineering,2016,24(4):945-953 2014,36(5):1004-1009 [3]刘威,陈先桥,初秀民.基于置信规则推理方法的雷达目 [12]修春波,魏世安,万蓉凤.二维联合特征模型的自适应 标跟踪J.哈尔滨工程大学学报,2016,37(6):826-831 均值漂移目标跟踪[J].光电子·激光,2015,26(2): 342-351. LIU Wei,CHEN Xianqiao,CHU Xiumin.Radar target XIU Chunbo,WEI Shian,WAN Rongfeng.CamShift tar- tracking via belief rule-based methodology[J].Journal of get tracking based on two-dimensional joint characterist- Harbin Engineering University,2016,37(6):826-831. ics[J].Journal of optoelectronicslaser,2015,26(2): 「4]王春平,王暐,刘江义,等.基于色度饱和度-角度梯度直 342-351. 方图特征的尺度自适应核相关滤波跟踪凹.光学精密工 [13]张天翼,杨忠,韩家明,等.基于连续自适应均值漂移和 程,2016,249:2293-2301. 立体视觉的无人机目标跟踪方法.应用科技,2018, WANG Chunping,WANG Wei,LIU Jiangyi,et al.Scale 45(2):55-59 adaptive kernelized correlation filter tracking based on ZHANG Tianyi,YANG Zhong,HAN Jiaming,et al.Ap- HHS-OG feature[J].Optics and precision engineering, proach of vision navigation of UAV based on continu- 2016,24(9):2293-2301 ously adaptive mean-shift and stereo vision[J].Applied [5]朱齐丹,韩瑜,蔡成涛.全景视觉非线性核相关滤波目标 science and technology,2018,45(2):55-59. 跟踪技术[J].哈尔滨工程大学学报,2018,39(7): [14]刘明华,汪传生,王宪伦.基于多特征自适应融合的均 1220-1226 值迁移目标跟踪算法[J】.光电子·激光,2015,26(8): ZHU Qidan.HAN Yu,CAI Chengtao.Omni-directional 1583-1592 visual object tracking using nonlinear kernelized correla- LIU Minghua,WANG Chuansheng,WANG Xianlun. tion filters[J].Journal of Harbin Engineering University, Mean-shift target tracking algorithm based on adaptive 2018,397):1220-1226 multi-features fusion[J].Journal of optoelectronics laser. [6]LIU Shenshen,ZHOU Pu,MA Chanyu.Athlete tracking 2015,26(8):1583-1592 model based on morphological noise removal camshift al- [15]夏瑜,吴小俊,李菊,等.基于多特征自适应融合的分类 gorithm[J].International journal of earth science and en- 采样跟踪算法).光电子激光,2016,27(3)325-331. gineering,2015,8(5):2246-2251 XIA Yu,WU Xiaojun,LI Ju,et al.Classified sampling [7]于蕾,夏业儒,杨良洁.改进理解诊断跟踪系统的目标跟 tracking algorithm based on adaptive multiple features fu- 踪方法U.应用科技,2018.45(4):76-81 sion[J].Journal of optoelectronics.laser,2016,27(3)
移,从而影响跟踪性能的问题,提出了基于模糊 直方图模型的目标跟踪方法,采用模糊划分色度 等级的方式建立目标直方图模型,弱化了色度划 分阈值对直方图模型的影响,降低了目标模型对 光照变化等干扰的敏感性,提高了跟踪方法的适 应性。跟踪实验结果表明,在光照变化明显等情 况下,与传统跟踪方法相比,该方法具有更好的 跟踪性能,能够完成在不同光照条件下的目标跟 踪,且目标定位与跟踪所需计算量较小,运算时 间满足实时性的要求。 参考文献: QU Shiru, LIU Ningning. Face detection and tracking method based on SMQT and CAMSHIFT[J]. Journal of computational information systems, 2015, 11(14): 5153–5162. [1] 黄晋英, 宋国浩, 兰艳亭, 等. 交比不变的 Camshift 跟踪 方法 [J]. 光学精密工程, 2016, 24(4): 945–953. HUANG Jinying, SONG Guohao, LAN Yanting, et al. Camshift tracking based on constant cross ratio[J]. Optics and precision engineering, 2016, 24(4): 945–953. [2] 刘威, 陈先桥, 初秀民. 基于置信规则推理方法的雷达目 标跟踪 [J]. 哈尔滨工程大学学报, 2016, 37(6): 826–831. LIU Wei, CHEN Xianqiao, CHU Xiumin. Radar target tracking via belief rule-based methodology[J]. Journal of Harbin Engineering University, 2016, 37(6): 826–831. [3] 王春平, 王暐, 刘江义, 等. 基于色度饱和度−角度梯度直 方图特征的尺度自适应核相关滤波跟踪 [J]. 光学精密工 程, 2016, 24(9): 2293–2301. WANG Chunping, WANG Wei, LIU Jiangyi, et al. Scale adaptive kernelized correlation filter tracking based on HHS-OG feature[J]. Optics and precision engineering, 2016, 24(9): 2293–2301. [4] 朱齐丹, 韩瑜, 蔡成涛. 全景视觉非线性核相关滤波目标 跟踪技术 [J]. 哈尔滨工程大学学报, 2018, 39(7): 1220–1226. ZHU Qidan, HAN Yu, CAI Chengtao. Omni-directional visual object tracking using nonlinear kernelized correlation filters[J]. Journal of Harbin Engineering University, 2018, 39(7): 1220–1226. [5] LIU Shenshen, ZHOU Pu, MA Chanyu. Athlete tracking model based on morphological noise removal camshift algorithm[J]. International journal of earth science and engineering, 2015, 8(5): 2246–2251. [6] 于蕾, 夏业儒, 杨良洁. 改进理解诊断跟踪系统的目标跟 踪方法 [J]. 应用科技, 2018, 45(4): 76–81. [7] YU Lei, XIA Yeru, YANG Liangjie. A target tracking algorithm for the improved understanding, diagnosing and tracking system[J]. Applied science and technology, 2018, 45(4): 76–81. YIN Minghao, ZHANG Jin, SUN Hongguang, et al. Multicue-based CamShift guided particle filter tracking[J]. Expert systems with applications, 2011, 38(5): 6313–6318. [8] HUANG Danchi, LI Lijuan. Face tracking algorithm based on improved Camshift and surf algorithm[J]. Journal of computational information systems, 2015, 11(3): 893–901. [9] HSIA C H, LIOU Y J, CHIANG J S. Directional prediction camshift algorithm based on adaptive search pattern for moving object tracking[J]. Journal of real-time image processing, 2016, 12(1): 183–195. [10] 修春波, 卢少磊, 任晓. 基于微分信息融合的 Mean Shift 改进跟踪算法 [J]. 系统工程与电子技术, 2014, 36(5): 1004–1009. XIU Chunbo, LU Shaolei, REN Xiao. Improved mean shift tracking algorithm based on differential information[J]. Systems engineering and electronics, 2014, 36(5): 1004–1009. [11] 修春波, 魏世安, 万蓉凤. 二维联合特征模型的自适应 均值漂移目标跟踪 [J]. 光电子·激光, 2015, 26(2): 342–351. XIU Chunbo, WEI Shian, WAN Rongfeng. CamShift target tracking based on two-dimensional joint characteristics[J]. Journal of optoelectronics·laser, 2015, 26(2): 342–351. [12] 张天翼, 杨忠, 韩家明, 等. 基于连续自适应均值漂移和 立体视觉的无人机目标跟踪方法 [J]. 应用科技, 2018, 45(2): 55–59. ZHANG Tianyi, YANG Zhong, HAN Jiaming, et al. Approach of vision navigation of UAV based on continuously adaptive mean-shift and stereo vision[J]. Applied science and technology, 2018, 45(2): 55–59. [13] 刘明华, 汪传生, 王宪伦. 基于多特征自适应融合的均 值迁移目标跟踪算法 [J]. 光电子·激光, 2015, 26(8): 1583–1592. LIU Minghua, WANG Chuansheng, WANG Xianlun. Mean-shift target tracking algorithm based on adaptive multi-features fusion[J]. Journal of optoelectronics·laser, 2015, 26(8): 1583–1592. [14] 夏瑜, 吴小俊, 李菊, 等. 基于多特征自适应融合的分类 采样跟踪算法 [J]. 光电子·激光, 2016, 27(3): 325–331. XIA Yu, WU Xiaojun, LI Ju, et al. Classified sampling tracking algorithm based on adaptive multiple features fusion[J]. Journal of optoelectronics·laser, 2016, 27(3): [15] 第 5 期 修春波,等:模糊直方图模型的运动目标跟踪 ·945·
·946· 智能系统学报 第14卷 325-331 作者简介: [I6]杨超,蔡晓东,王丽娟,等.一种改进的CAMshift跟踪 修春波,男,1978年生.教授,博 算法及人脸检测框架[].计算机工程与科学,2016, 土,主要研究方向为人工神经网络及 38(9:1863-1869 目标识别。主持完成国家自然科学基 金项目1项,天津市应用基础与前沿 YANG Chao,CAI Xiaodong,WANG Lijuan,et al.An 计划项目1项,获得授权发明专利 improved CAMShift tracking algorithm and a face detec- 10余项。发表学术论文100余篇。 tion framework[J].Computer engineering and science, 2016,38(9y1863-1869. 李欣,女,1994年生,硕土研究 [l7]修春波,魏世安.显著性直方图模型的Camshift跟踪方 生,主要研究方向为图像处理与模式 法[).光学精密工程,2015,23(6:1749-1757 识别。 XIU Chunbo,WEI Shian.Camshift tracking with sali- ency histogram[J].Optics and precision engineering, 2015,23(6)1749-1757. [18]林建华,刘党辉,邵显奎.多特征融合的Camshift算法 及其进一步改进[J].计算机应用,2012,32(10): 巴富珊,女,1993年生.硕士研究 2814-2816.2820. 生,主要研究方向为机器视觉与目标 检测。 LIN Jianhua,LIU Danghui,SHAO Xiankui.Multi-fea- ture fusion Camshift algorithm and its further improve- ment[J].Journal of computer applications,2012,32(10): 2814-2816.2820
325–331. 杨超, 蔡晓东, 王丽娟, 等. 一种改进的 CAMshift 跟踪 算法及人脸检测框架 [J]. 计算机工程与科学, 2016, 38(9): 1863–1869. YANG Chao, CAI Xiaodong, WANG Lijuan, et al. An improved CAMShift tracking algorithm and a face detection framework[J]. Computer engineering and science, 2016, 38(9): 1863–1869. [16] 修春波, 魏世安. 显著性直方图模型的 Camshift 跟踪方 法 [J]. 光学精密工程, 2015, 23(6): 1749–1757. XIU Chunbo, WEI Shian. Camshift tracking with saliency histogram[J]. Optics and precision engineering, 2015, 23(6): 1749–1757. [17] 林建华, 刘党辉, 邵显奎. 多特征融合的 Camshift 算法 及其进一步改进 [J]. 计算机应用, 2012, 32(10): 2814–2816, 2820. LIN Jianhua, LIU Danghui, SHAO Xiankui. Multi-feature fusion Camshift algorithm and its further improvement[J]. Journal of computer applications, 2012, 32(10): 2814–2816, 2820. [18] 作者简介: 修春波,男,1978 年生,教授,博 士,主要研究方向为人工神经网络及 目标识别。主持完成国家自然科学基 金项目 1 项,天津市应用基础与前沿 计划项目 1 项,获得授权发明专利 10 余项。发表学术论文 100 余篇。 李欣,女,1994 年生,硕士研究 生,主要研究方向为图像处理与模式 识别。 巴富珊,女,1993 年生,硕士研究 生,主要研究方向为机器视觉与目标 检测。 ·946· 智 能 系 统 学 报 第 14 卷