ANALOG Precision Triaxial Inclinometer and DEVICES Accelerometer with SPl AD1S16210 FEATURES GENERAL DESCRIPTION Triaxial,digital inclinometer system The ADIS16210 iSensor"is a digital inclinometer system that ±18o°measurement range,,roll and pitch axes provides precise measurements for both pitch and roll angles ±90°gravity axis over a full orientation range of +180.It combines a MEMS tri- ±o.1°relative accuracy axial acceleration sensor with signal processing,addressable user Triaxial,digital accelerometer,high accuracy registers for data collection/programming,and a SPI-compatible t1.7 g measurement range serial interface.In addition,the production process includes unit ±0.05°axis-to-axis alignment specific calibration for optimal accuracy performance.It also Digital internal temperature measurements offers digital temperature sensor and power supply measurements Digital internal power supply measurements together with configuration controls for in-system calibration, Programmable user calibration options sample rate,filtering,alarms,I/O configuration,and power Single command,frame alignment management. Manual accelerometer bias correction The MEMS sensor elements are bound to an aluminum core for Programmable operation and control tight platform coupling and excellent mechanical stability.An Sample rate/filtering Alarm conditions and indicator output internal clock drives the data sampling system,which eliminates the need for an external clock source.The SPI and data buffer Input/output:data ready,alarm,general-purpose structure provide convenient access to accurate sensor data and Power management functions configuration controls. SPl-compatible serial interface Serial number and device ID The ADIS16210 is available in a 15 mm x 24 mm x 15 mm module Single-supply operation:3.0V to 3.6 V that provides mounting tabs with M2-sized mounting holes and a Calibrated temperature range:-40C to +85C flexible,edge terminated connector interface.It has an extended 15 mm x 24 mm x 15 mm package with flexible connector operating temperature range of-40C to +125C. APPLICATIONS Platform control,stabilization,and alignment Tilt sensing,inclinometers,and leveling Motion/position measurement Monitor/alarm devices(security,medical,safety) Navigation FUNCTIONAL BLOCK DIAGRAM DIO1 DIO2 RST Q ADIS16210 SELF TEST o ALARMS POWER MANAGEMENT DGND TRIAXIAL SENSOR ONTROLLER CONTROL cs REGISTERS TEMPERATURE SPI SCLK PORT SENSOR DIGITAL CORRECTION DIN AND INCLINE FILTER CALIBRATION REGISTERS SUPPLY ALIGNMENT Figure 1. Rev.A Inform fumished by Analog Devices is believed to be accurate and reliable.However,no responsibility is assumed by Analog Devices for its use,nor for any infringements of patents or other rights of third parties that may result fromits use.Specifications subject to change without notice.No One Technology Way,P.O.Box 9106,Norwood,MA 02062-9106,U.S.A. nse is granted by implication or otherwise under any patent or patent rights of Analog Devices Tel:781.329.4700 www.analog.com marks are the property oftheir respective owners. FaX:781.4613113 2011 Analog Devices,Inc.All rights reserved
Precision Triaxial Inclinometer and Accelerometer with SPI ADIS16210 Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved. FEATURES Triaxial, digital inclinometer system ±180° measurement range, roll and pitch axes ±90° gravity axis ±0.1° relative accuracy Triaxial, digital accelerometer, high accuracy ±1.7 g measurement range ±0.05° axis-to-axis alignment Digital internal temperature measurements Digital internal power supply measurements Programmable user calibration options Single command, frame alignment Manual accelerometer bias correction Programmable operation and control Sample rate/filtering Alarm conditions and indicator output Input/output: data ready, alarm, general-purpose Power management functions SPI-compatible serial interface Serial number and device ID Single-supply operation: 3.0 V to 3.6 V Calibrated temperature range: −40°C to +85°C 15 mm × 24 mm × 15 mm package with flexible connector APPLICATIONS Platform control, stabilization, and alignment Tilt sensing, inclinometers, and leveling Motion/position measurement Monitor/alarm devices (security, medical, safety) Navigation GENERAL DESCRIPTION The ADIS16210 iSensor® is a digital inclinometer system that provides precise measurements for both pitch and roll angles over a full orientation range of ±180°. It combines a MEMS triaxial acceleration sensor with signal processing, addressable user registers for data collection/programming, and a SPI-compatible serial interface. In addition, the production process includes unit specific calibration for optimal accuracy performance. It also offers digital temperature sensor and power supply measurements together with configuration controls for in-system calibration, sample rate, filtering, alarms, I/O configuration, and power management. The MEMS sensor elements are bound to an aluminum core for tight platform coupling and excellent mechanical stability. An internal clock drives the data sampling system, which eliminates the need for an external clock source. The SPI and data buffer structure provide convenient access to accurate sensor data and configuration controls. The ADIS16210 is available in a 15 mm × 24 mm × 15 mm module that provides mounting tabs with M2-sized mounting holes and a flexible, edge terminated connector interface. It has an extended operating temperature range of −40°C to +125°C. FUNCTIONAL BLOCK DIAGRAM ADIS16210 INCLINE CALIBRATION SELF TEST I/O ALARMS CONTROL REGISTERS SPI PORT OUTPUT REGISTERS CORRECTION AND ALIGNMENT DIGITAL FILTER TRIAXIAL MEMS SENSOR TEMPERATURE SENSOR SUPPLY POWER MANAGEMENT CS SCLK DIN DOUT GND DIO1 DIO2 RST VDD CONTROLLER 09593-001 Figure 1
ADIS16210 TABLE OF CONTENTS Features........ System Tools. …14 Applications.… Global Commands....... 14 General Description..... 1 Input/Output Functions.... .14 Functional Block Diagram. Device Identification15 Revision History2 Status/Error Flags15 SpecificationS3 Flash Memory Management15 Timing Specifications .4 Alr..8 Absolute Maximum Ratings....... …5 System Alarm.... .16 ESD Caution.… 5 Static Alarms..... .16 Pin Configuration and Function Descriptions... 46 Dynamic Alarms.... .16 Basic peration. Alarm Reporting.... 16 Reading Sensor Data Applications Information. .17 Device Configuration. Interface Board.7 User Register Map.8 Mating Outline Output Data Registers.9 Ordering Signal Processing,Bias Correction,and Alignment........12 REVISION HISTORY 6/11-Rev.0to Rev.A Changes to Table 13 Changes to Table 23.12 Changes to Figure 24 and Figure 25.... .17 4/11-Revision 0:Initial Version Rev.A [Page 2 of 20
ADIS16210 Rev. A | Page 2 of 20 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Timing Specifications .................................................................. 4 Absolute Maximum Ratings............................................................ 5 ESD Caution.................................................................................. 5 Pin Configuration and Function Descriptions............................. 6 Basic Operation................................................................................. 7 Reading Sensor Data.................................................................... 7 Device Configuration .................................................................. 7 User Register Map ............................................................................ 8 Sensor Data........................................................................................ 9 Output Data Registers.................................................................. 9 Signal Processing, Bias Correction, and Alignment .................. 12 System Tools.................................................................................... 14 Global Commands ..................................................................... 14 Input/Output Functions ............................................................ 14 Device Identification.................................................................. 15 Status/Error Flags ....................................................................... 15 Flash Memory Management..................................................... 15 Alarms.............................................................................................. 16 System Alarm.............................................................................. 16 Static Alarms............................................................................... 16 Dynamic Alarms ........................................................................ 16 Alarm Reporting ........................................................................ 16 Applications Information .............................................................. 17 Interface Board ........................................................................... 17 Mating Connector...................................................................... 17 Outline Dimensions ....................................................................... 18 Ordering Guide .......................................................................... 18 REVISION HISTORY 6/11—Rev. 0 to Rev. A Changes to Table 1............................................................................ 3 Changes to Table 23........................................................................ 12 Changes to Figure 24 and Figure 25............................................. 17 4/11—Revision 0: Initial Version
ADIS16210 SPECIFICATIONS Ta=-40C to +85C,VDD =3.0 V to 3.6 V,unless otherwise noted. Table 1. Parameter Test Conditions/Comments Min Typ Max Unit INCLINOMETERS Measurement Range -180 +180 Degrees Relative Accuracy ±30°,AVG_CNT≥0x0009,μ±3o ±0.1 Degrees ±60°,AVG_CNT20x0009,μ±1o ±0.1 Degrees ±60°,AVG_CNT≥0x0009,μ±3o ±0.15 Degrees ±180°,AVG CNT≥0x0009,μ±1o ±0.14 Degrees ±180°,AVG_CNT≥0x0009,μ±3o ±0.21 Degrees Noise Density TA=25℃,AVG CNT=0x0000 ±0.011 /Hz ACCELEROMETERS Measurement Range ±1.7 P Offset Error μ±1g ±1 mg Sensitivity Error μ±1o ±0.0244 9% Nonlinearity ±1g,μ±10 ±1 ±2 mg Misalignment Axis to axis,deviation from90°,μ±1g ±0.05 Degrees Noise Density TA=25℃,AVG CNT=0x0000 190 μg/WHz Bandwidth -3 dB decrease in dc sensitivity,TA=25C 50 Hz Sensor Resonant Frequency TA=25C 5.5 kHz LOGIC INPUTS Input High Voltage,VINH 2.0 Input Low Voltage,VINL 0.8 Logic 1 Input Current,liNH ViH=3.3V ±0.2 ±1 A Logic 0 Input Current,liNL VL=0V All Except RST -40 -60 A RST -1 mA Input Capacitance,CIN 10 pF DIGITAL OUTPUTS' Output High Voltage,VoH IsouRCE=1.6 mA 2.4 V Output Low Voltage,Vou IsINK=1.6 mA 0.4 V FLASH MEMORY Endurance2 10,000 Cycles Data Retention3 T=85℃ 20 Years START-UP TIME4 Initial Startup 156 ms Reset Recoverys RST pulse low or Register GLOB_CMD[7]=1 33.8 ms Sleep Mode Recovery After CS assertion from high to low 22.3 ms CONVERSION RATE Register AVG_CNT=0x0000 512 SPS Clock Accuracy 3 % POWER SUPPLY Operating voltage range,VDD 3.0 3.3 3.6 V Power Supply Current Normal mode,Ta=25℃ 18 mA Sleep mode,TA=25C 230 uA The digital V/O signals are 5 V tolerant. 2 Endurance is qualified as per JEDEC Standard 22,Method A117,and measured at-40C,+25C,+85C,and +125C. Retention lifetime equivalent at junction temperature(T)=85"C as per JEDEC Standard 22,Method A117.Retention lifetime decreases with junction temperature.See Figure 22. +The start-up times presented do not include the data capture time,which is dependent on the AVG_CNT register settings. s The RST pin must be held low for at least 15 ns. Rev.A|Page3 of 20
ADIS16210 Rev. A | Page 3 of 20 SPECIFICATIONS TA = −40°C to +85°C, VDD = 3.0 V to 3.6 V, unless otherwise noted. Table 1. Parameter Test Conditions/Comments Min Typ Max Unit INCLINOMETERS Measurement Range −180 +180 Degrees Relative Accuracy ±30°, AVG_CNT ≥ 0x0009, μ ± 3 σ ±0.1 Degrees ±60°, AVG_CNT ≥ 0x0009, μ ± 1 σ ±0.1 Degrees ±60°, AVG_CNT ≥ 0x0009, μ ± 3 σ ±0.15 Degrees ±180°, AVG_CNT ≥ 0x0009, μ ± 1 σ ±0.14 Degrees ±180°, AVG_CNT ≥ 0x0009, μ ± 3 σ ±0.21 Degrees Noise Density TA = 25°C, AVG_CNT = 0x0000 ±0.011 °/√Hz ACCELEROMETERS Measurement Range ±1.7 g Offset Error μ ± 1 σ ±1 mg Sensitivity Error μ ± 1 σ ±0.0244 % Nonlinearity ±1 g, μ ± 1 σ ±1 ±2 mg Misalignment Axis to axis, deviation from 90°, μ ± 1 σ ±0.05 Degrees Noise Density TA = 25°C, AVG_CNT = 0x0000 190 μg/√Hz Bandwidth −3 dB decrease in dc sensitivity, TA = 25°C 50 Hz Sensor Resonant Frequency TA = 25°C 5.5 kHz LOGIC INPUTS1 Input High Voltage, VINH 2.0 V Input Low Voltage, VINL 0.8 V Logic 1 Input Current, IINH VIH = 3.3 V ±0.2 ±1 μA Logic 0 Input Current, IINL VIL = 0 V All Except RST −40 −60 μA RST −1 mA Input Capacitance, CIN 10 pF DIGITAL OUTPUTS1 Output High Voltage, VOH ISOURCE = 1.6 mA 2.4 V Output Low Voltage, VOL ISINK = 1.6 mA 0.4 V FLASH MEMORY Endurance2 10,000 Cycles Data Retention3 TJ = 85°C 20 Years START-UP TIME4 Initial Startup 156 ms Reset Recovery5 RST pulse low or Register GLOB_CMD[7] = 1 33.8 ms Sleep Mode Recovery After CS assertion from high to low 22.3 ms CONVERSION RATE Register AVG_CNT = 0x0000 512 SPS Clock Accuracy 3 % POWER SUPPLY Operating voltage range, VDD 3.0 3.3 3.6 V Power Supply Current Normal mode, TA = 25°C 18 mA Sleep mode, TA = 25°C 230 μA 1 The digital I/O signals are 5 V tolerant. 2 Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, +85°C, and +125°C. 3 Retention lifetime equivalent at junction temperature (TJ) = 85°C as per JEDEC Standard 22, Method A117. Retention lifetime decreases with junction temperature. See Figure 22. 4 The start-up times presented do not include the data capture time, which is dependent on the AVG_CNT register settings. 5 The RST pin must be held low for at least 15 ns
ADIS16210 TIMING SPECIFICATIONS TA=25C,VDD=3.3 V,unless otherwise noted. Table 2. Parameter Description Min' Typ Max Unit fscLK SCLK frequency 10 830 kHz tSTALL Stall period between data,between 16th and 17th SCLK 40 5 tcs Chip select to SCLK edge 48.8 ns tDAV DOUT valid after SCLK edge 100 ns tosu DIN setup time before SCLK rising edge 24.4 ns tDHD DIN hold time after SCLK rising edge 48.8 tsR SCLK rise time 12.5 tsr SCLK fall time 12.5 ns tor,toR DOUT rise/fall times,not shown in Timing Diagrams section. 12.5 tsFs CS high after SCLK edge 5 ns Guaranteed by design,not tested. Timing Diagrams cs tsR tcs 4-tsrs SCLK DOUT MSB DB14 DB13 DB12 DB11 DB10 DB2 DB1 DIN w A6 A4 A3 A2 D2 D1 Figure 2.SPI Timing and Sequence tSTALL SCLK Figure 3.DIN Bit Sequence Rev.A|Page4of 20
ADIS16210 Rev. A | Page 4 of 20 TIMING SPECIFICATIONS TA = 25°C, VDD = 3.3 V, unless otherwise noted. Table 2. Parameter Description Min1 Typ Max Unit fSCLK SCLK frequency 10 830 kHz tSTALL Stall period between data, between 16th and 17th SCLK 40 μs tCS Chip select to SCLK edge 48.8 ns tDAV DOUT valid after SCLK edge 100 ns tDSU DIN setup time before SCLK rising edge 24.4 ns tDHD DIN hold time after SCLK rising edge 48.8 ns tSR SCLK rise time 12.5 ns tSF SCLK fall time 12.5 ns tDF, tDR DOUT rise/fall times, not shown in Timing Diagrams section. 5 12.5 ns tSFS CS high after SCLK edge 5 ns 1 Guaranteed by design, not tested. Timing Diagrams CS SCLK DOUT DIN 1 23 4 56 15 16 R/W A6 A5 A4 A3 A2 D2 MSB DB14 D1 LSB DB13 DB12 DB11 DB10 DB2 DB1 LSB tCS tSFS tDAV tSR tSF tDSU tDHD 09593-002 Figure 2. SPI Timing and Sequence CS SCLK tSTALL 09593-003 Figure 3. DIN Bit Sequence
ADIS16210 ABSOLUTE MAXIMUM RATINGS Table 3. Table 4.Package Characteristics Parameter Rating Package Type 日A θc Device Weight Acceleration 15-Lead Module 31C/W 11CMW 7.2 grams Any Axis,Unpowered 3500g Any Axis,Powered 35009 VDD to GND -0.3Vto+6.0V ESD CAUTION Digital Input Voltage to GND -0.3Vto+5.3V ESD (electrostatic discharge)sensitive device. Digital Output Voltage to GND -0.3Vto VDD+0.3V Charged devices and circuit boards can discharge without detection.Although this product features Analog Inputs to GND -0.3Vto+3.6V patented or proprietary protection circuitry,damage Operating Temperature Range 40Cto+125℃ may occur on devices subjected to high energy ESD. -65℃to+150℃ Therefore,proper ESD precautions should be taken to Storage Temperature Range avoid performance degradation or loss of functionality. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device.This is a stress rating only;functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied.Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev.A|Page 5 of 20
ADIS16210 Rev. A | Page 5 of 20 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Rating Acceleration Any Axis, Unpowered 3500 g Any Axis, Powered 3500 g VDD to GND −0.3 V to +6.0 V Digital Input Voltage to GND −0.3 V to +5.3 V Digital Output Voltage to GND −0.3 V to VDD + 0.3 V Analog Inputs to GND −0.3 V to +3.6 V Operating Temperature Range −40°C to +125°C Storage Temperature Range −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 4. Package Characteristics Package Type θJA θJC Device Weight 15-Lead Module 31°C/W 11°C/W 7.2 grams ESD CAUTION
ADIS16210 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS PIN1- PIN 15 PIN 15- PIN 1- TOP VIEW BOTTOM VIEW NOTES 1.LEADS ARE EXPOSED COPPER PADS LOCATED ON THE BOTTOM SIDE OF THE FLEXIBLE INTERFACE CABLE. 2.PACKAGE IS NOT SUITABLE FOR SOLDER REFLOW ASSEMBLY PROCESSES. 3.EXAMPLE MATING CONNECTOR:AVX CORPORATION FLAT FLEXIBLE CONNECTOR (FFC) P/:04-6288-015-000-846 Figure 4.Pin Configuration Table 5.Pin Function Descriptions Pin No. Mnemonic Type Description 1,2 VDD Power Supply,3.3 V. 3,4,5,8 GND Ground. 6,9 DNC Do Not Connect.Do not connect to these pins > DIO2 VO Digital Input/Output Line 2. 10 RST Reset,Active Low. 11 DIN SPl,Data Input. 12 DOUT 0 SPl,Data Output.DOUT is an output when CS is low.When CS is high,DOUT is in a three-state,high impedance mode. 13 SCLK SPI,Serial Clock. 14 CS SPI,Chip Select. 15 DIO1 1/O Digital Input/Output Line 1. s is supply,O is output,Iis input,and l/O is input/output. Rev.A|Page 6of 20
ADIS16210 Rev. A | Page 6 of 20 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 09593-004 TOP VIEW BOTTOM VIEW PIN 15 PIN 15 PIN 1 PIN 1 NOTES 1. LEADS ARE EXPOSED COPPER PADS LOCATED ON THE BOTTOM SIDE OF THE FLEXIBLE INTERFACE CABLE. 2. PACKAGE IS NOT SUITABLE FOR SOLDER REFLOW ASSEMBLY PROCESSES. 3. EXAMPLE MATING CONNECTOR: AVX CORPORATION FLAT FLEXIBLE CONNECTOR (FFC) P/N: 04-6288-015-000-846. Figure 4. Pin Configuration Table 5. Pin Function Descriptions Pin No. Mnemonic Type1 Description 1, 2 VDD S Power Supply, 3.3 V. 3, 4, 5, 8 GND S Ground. 6, 9 DNC I Do Not Connect. Do not connect to these pins. 7 DIO2 I/O Digital Input/Output Line 2. 10 RST I Reset, Active Low. 11 DIN I SPI, Data Input. 12 DOUT O SPI, Data Output. DOUT is an output when CS is low. When CS is high, DOUT is in a three-state, high impedance mode. 13 SCLK I SPI, Serial Clock. 14 CS I SPI, Chip Select. 15 DIO1 I/O Digital Input/Output Line 1. 1 S is supply, O is output, I is input, and I/O is input/output
ADIS16210 BASIC OPERATION The ADIS16210 is an autonomous system that requires no user READING SENSOR DATA initialization.Upon receiving a valid power supply,it initializes A single register read requires two 16-bit SPI cycles.The first itself and starts sampling,processing,and loading data into the cycle requests the contents of a register using the bit assignments output registers.When using the factory default configuration, in Figure9.The register contents then follow on DOUT,during DIO1 provides a data ready signal.The SPI interface enables the second sequence. simple integration with many embedded processor platforms, Figure 6 includes three single register reads in succession.In as shown in Figure 5(electrical connection)and Table 6(processor this example,the process starts with DIN=0x0400 to request pin descriptions). the contents of the XACCL_OUT register,followed by 0x0600 IO LINES ARE COMPATIBLE WITH 3.3V VDD 3.3V OR 5V LOGIC LEVELS to request the contents of the YACCL_OUT register,and then 0x0800 to request the contents of the ZACCL_OUT register. SYSTEM Full duplex operation enables processors to use the same 16-bit PROCESSOR ④cs ADIS16210 SPI MASTER SPI cycle to read data from DOUT while requesting the next set SCLK ③scLK of data on DIN. MOSI 11 DIN DIN 0x0400 0x0600 0x0800 MISO ②DOUT IRQ ③DHO1 DOUT XACCL_OUT YACCL OUT ZACCL_OUT Figure 6.SPI Read Example Remove R0FE Figure 7 provides an example of four SPI signals when reading Figure 5.Electrical Connection Diagram PROD ID in a repeating pattern. Table 6.Generic Master Processor Pin Names and Functions cs7 Pin Name Function salx厂 SS Slave select IRQ Interrupt request,optional DINDIN=010101100000000=0x5600 MOSI Master output,slave input DOUT 几几Π MISO Master input,slave output D0UT=0011111101011100=0x3F52=16210 SCLK Serial clock Figure 7.SPl Read Example,Second 16-Bit Sequence The ADIS16210 SPI interface supports full duplex serial commu- DEVICE CONFIGURATION nication(simultaneous transmit and receive)and uses the bit The user register map(Table 8)provides a variety of control sequence shown in Figure 9.Table 7 provides a list of the most registers,which enable optimization for specific applications. common settings that initialize the serial port of a processor for the The SPI provides access to these registers,one byte at a time, ADIS16210 SPI interface. using the bit assignments shown in Figure 9.Each register has Table 7.Generic Master Processor SPI Settings 16 bits,where Bits[7:0]represent the lower address and Bits[15:8] Processor Setting Description represent the upper address.Figure 8 displays the SPI signal Master ADIS16210 operates as a slave pattern for writing 0x07 to Address 0x38,which sets the number SCLK Rate≤830kHz Maximum serial clock rate of averages to 128 and the sample rate to 4 SPS. SPI Mode 3 CPOL=1(polarity),CPHA=1(phase) cs MSB-First Mode Bit sequence sckU厂 16-Bit Mode Shift register/data length w冂 DIN=1011100000000111=0xB807,SET AVG_CNTI7:0=0x07 Figure8.Example SPIWrite Pattern c SCLK DIN R/WASASA4 A3A2 A1 A0 DC7 DC6 DCS DC4DC3 DC2 DC1 DCOR/W A6 A5 DOUT D15D14D13D12D11D10D9D8D765D4D3D2D1D0D15D14D13 NOTES 1.DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W =0. 2.WHEN CS IS HIGH,DOUT IS IN A THREE-STATE,HIGH IMPEDANCE MODE,WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE FOR OTHER DEVICES. Figure 9.SPI Communication Bit Sequence Rev.A|Page7 of 20
ADIS16210 Rev. A | Page 7 of 20 BASIC OPERATION The ADIS16210 is an autonomous system that requires no user initialization. Upon receiving a valid power supply, it initializes itself and starts sampling, processing, and loading data into the output registers. When using the factory default configuration, DIO1 provides a data ready signal. The SPI interface enables simple integration with many embedded processor platforms, as shown in Figure 5 (electrical connection) and Table 6 (processor pin descriptions). SYSTEM PROCESSOR SPI MASTER ADIS16210 SCLK CS DIN DOUT SCLK SS MOSI MISO 3.3V IRQ DIO1 VDD I/O LINES ARE COMPATIBLE WITH 3.3V OR 5V LOGIC LEVELS 14 13 11 12 15 1 2 3 4 5 8 09593-006 Figure 5. Electrical Connection Diagram Table 6. Generic Master Processor Pin Names and Functions Pin Name Function SS Slave select IRQ Interrupt request, optional MOSI Master output, slave input MISO Master input, slave output SCLK Serial clock The ADIS16210 SPI interface supports full duplex serial communication (simultaneous transmit and receive) and uses the bit sequence shown in Figure 9. Table 7 provides a list of the most common settings that initialize the serial port of a processor for the ADIS16210 SPI interface. Table 7. Generic Master Processor SPI Settings Processor Setting Description Master ADIS16210 operates as a slave SCLK Rate ≤ 830 kHz Maximum serial clock rate SPI Mode 3 CPOL = 1 (polarity), CPHA = 1 (phase) MSB-First Mode Bit sequence 16-Bit Mode Shift register/data length READING SENSOR DATA A single register read requires two 16-bit SPI cycles. The first cycle requests the contents of a register using the bit assignments in Figure 9. The register contents then follow on DOUT, during the second sequence. Figure 6 includes three single register reads in succession. In this example, the process starts with DIN = 0x0400 to request the contents of the XACCL_OUT register, followed by 0x0600 to request the contents of the YACCL_OUT register, and then 0x0800 to request the contents of the ZACCL_OUT register. Full duplex operation enables processors to use the same 16-bit SPI cycle to read data from DOUT while requesting the next set of data on DIN. DIN DOUT 0x0400 0x0600 0x0800 XACCL_OUT YACCL_OUT ZACCL_OUT 09593-007 Figure 6. SPI Read Example Remove Figure 7 provides an example of four SPI signals when reading PROD_ID in a repeating pattern. DOUT = 0011 1111 0101 1100 = 0x3F52 = 16210 DIN = 0101 0110 0000 0000 = 0x5600 CS SCLK DIN DOUT 09593-008 Figure 7. SPI Read Example, Second 16-Bit Sequence DEVICE CONFIGURATION The user register map (Table 8) provides a variety of control registers, which enable optimization for specific applications. The SPI provides access to these registers, one byte at a time, using the bit assignments shown in Figure 9. Each register has 16 bits, where Bits[7:0] represent the lower address and Bits[15:8] represent the upper address. Figure 8 displays the SPI signal pattern for writing 0x07 to Address 0x38, which sets the number of averages to 128 and the sample rate to 4 SPS. DIN = 1011 1000 0000 0111 = 0xB807, SET AVG_CNT[7:0] = 0x07 CS SCLK DIN 09593-009 Figure 8. Example SPI Write Pattern 09593-113 R/W A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0 R/W D15 D12D13D14 D11 D10 D7D8D9 D6 D3D4D5 D2 D0D1 CS SCLK DIN DOUT A6 A5 D15 D13D14 NOTES 1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0. 2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE FOR OTHER DEVICES. Figure 9. SPI Communication Bit Sequence
ADIS16210 USER REGISTER MAP Figure 10 provides a diagram of the dual memory structure used to manage operation and store user settings.Writing con- BACKUP figuration data to a control register updates its SRAM contents, NONVOLATILE VOLATILE which are volatile. FLASH MEMORY SRAM Most of the user registers have mirror locations in flash memory (NO SPI ACCESS) SPI ACCESS (see Table 8,for"yes"in the Flash Backup column).Use the manual flash backup command in GLOB CMD[6](DIN OxBE40)to save these settings into the nonvolatile flash memory. Figure 10.SRAM and Flash Memory Diagram The flash backup process requires a valid power supply level and zero SPI communication for the entire 28 ms process time. Table 8.User Register Memory Map Name R/W Flash Backup Address Size(Bytes) Function Reference FLASH CNT R Yes 0x00 2 Diagnostics,flash write counter(16-bit binary) Table 37 SUPPLY OUT 9 No 0x02 2 Output,power supply Table 20 XACCL OUT R No 0x04 2 Output,x-axis acceleration Table 9 YACCL OUT R No 0x06 2 Output,y-axis acceleration Table 10 ZACCL OUT R No 0x08 2 Output,z-axis acceleration Table 11 TEMP OUT R No 0x0A 2 Output,internal temperature Table 18 XINCL OUT 分 No 0x0C 2 Output,,±l80°x-axis inclination Table 13 YINCL OUT 分 No 0xOE 2 Output,±i80°y-axis inclination Table 14 ZINCL OUT R No 0x10 2 Output,,±180°z-axis inclination Table 15 XACCL NULL R/W Yes 0x12 2 Calibration,x-axis acceleration offset null Table 24 YACCL NULL R/W Yes 0x14 2 Calibration,y-axis acceleration offset null Table 25 ZACCL NULL R/W Yes 0x16 2 Calibration,z-axis acceleration offset null Table 26 0x18 to 0x1F 8 Reserved,do not write to these locations ALM MAG X R/W Yes 0x20 2 Alarm,x-axis amplitude threshold Table 39 ALM_MAG_Y R/W Yes 0x22 2 Alarm,y-axis amplitude threshold Table 40 ALM_MAG_Z R/W Yes 0x24 2 Alarm,z-axis amplitude threshold Table 41 ALM MAG S R/W Yes 0x26 2 Alarm,system alarm threshold Table 42 ALM SMPL X R/W Yes 0x28 2 Alarm,x-axis sample period Table 43 ALM SMPL Y R/W Yes 0x2A 2 Alarm,y-axis sample period Table 44 ALM SMPL Z R/W Yes 0x2C 2 Alarm,z-axis sample period Table 45 ALM CTRL R/W Yes 0x2E 2 Operation,alarm control Table 38 0x30 2 Reserved GPIO CTRL R/W Yes 0x32 2 Operation,general l/O configuration and data Table 31 MSC CTRL R/W Yes 0x34 2 Operation,orientation mode Table 27 DIO_CTRL R/W Yes 0x36 2 Operation,digital I/O configuration and data Table 30 AVG CNT R/W Yes 0x38 2 Operation,decimation filter configuration Table 22 SLP CNT R/W Yes 0x3A 2 Operation,sleep count Table 29 DIAG STAT R No 0x3C 2 Diagnostics,system status register Table 36 GLOB_CMD W No Ox3E 2 Operation,system command register Table 28 0x40to0x51 16 Reserved LOT ID1 R N/A 0x52 2 Lot identification,Code 1 Table 32 LOT_ID2 R N/A 0x54 2 Lot identification,Code 2 Table 33 PROD ID N/A 0x56 2 Production identification number Table 34 SERIAL NUM R N/A 0x58 2 Serial number Table 35 N/A means not applicable. Rev.A [Page 8 of 20
ADIS16210 Rev. A | Page 8 of 20 USER REGISTER MAP Figure 10 provides a diagram of the dual memory structure used to manage operation and store user settings. Writing configuration data to a control register updates its SRAM contents, which are volatile. Most of the user registers have mirror locations in flash memory (see Table 8, for “yes” in the Flash Backup column). Use the manual flash backup command in GLOB_CMD[6] (DIN = 0xBE40) to save these settings into the nonvolatile flash memory. The flash backup process requires a valid power supply level and zero SPI communication for the entire 28 ms process time. NONVOLATILE FLASH MEMORY (NO SPI ACCESS) MANUAL FLASH BACKUP START-UP RESET VOLATILE SRAM SPI ACCESS 09593-116 Figure 10. SRAM and Flash Memory Diagram Table 8. User Register Memory Map1 Name R/W Flash Backup Address Size (Bytes) Function Reference FLASH_CNT R Yes 0x00 2 Diagnostics, flash write counter (16-bit binary) Table 37 SUPPLY_OUT R No 0x02 2 Output, power supply Table 20 XACCL_OUT R No 0x04 2 Output, x-axis acceleration Table 9 YACCL_OUT R No 0x06 2 Output, y-axis acceleration Table 10 ZACCL_OUT R No 0x08 2 Output, z-axis acceleration Table 11 TEMP_OUT R No 0x0A 2 Output, internal temperature Table 18 XINCL_OUT R No 0x0C 2 Output, ±180° x-axis inclination Table 13 YINCL_OUT R No 0x0E 2 Output, ±180° y-axis inclination Table 14 ZINCL_OUT R No 0x10 2 Output, ±180° z-axis inclination Table 15 XACCL_NULL R/W Yes 0x12 2 Calibration, x-axis acceleration offset null Table 24 YACCL_NULL R/W Yes 0x14 2 Calibration, y-axis acceleration offset null Table 25 ZACCL_NULL R/W Yes 0x16 2 Calibration, z-axis acceleration offset null Table 26 0x18 to 0x1F 8 Reserved, do not write to these locations ALM_MAG_X R/W Yes 0x20 2 Alarm, x-axis amplitude threshold Table 39 ALM_MAG_Y R/W Yes 0x22 2 Alarm, y-axis amplitude threshold Table 40 ALM_MAG_Z R/W Yes 0x24 2 Alarm, z-axis amplitude threshold Table 41 ALM_MAG_S R/W Yes 0x26 2 Alarm, system alarm threshold Table 42 ALM_SMPL_X R/W Yes 0x28 2 Alarm, x-axis sample period Table 43 ALM_SMPL_Y R/W Yes 0x2A 2 Alarm, y-axis sample period Table 44 ALM_SMPL_Z R/W Yes 0x2C 2 Alarm, z-axis sample period Table 45 ALM_CTRL R/W Yes 0x2E 2 Operation, alarm control Table 38 0x30 2 Reserved GPIO_CTRL R/W Yes 0x32 2 Operation, general I/O configuration and data Table 31 MSC_CTRL R/W Yes 0x34 2 Operation, orientation mode Table 27 DIO_CTRL R/W Yes 0x36 2 Operation, digital I/O configuration and data Table 30 AVG_CNT R/W Yes 0x38 2 Operation, decimation filter configuration Table 22 SLP_CNT R/W Yes 0x3A 2 Operation, sleep count Table 29 DIAG_STAT R No 0x3C 2 Diagnostics, system status register Table 36 GLOB_CMD W No 0x3E 2 Operation, system command register Table 28 0x40 to 0x51 16 Reserved LOT_ID1 R N/A 0x52 2 Lot identification, Code 1 Table 32 LOT_ID2 R N/A 0x54 2 Lot identification, Code 2 Table 33 PROD_ID R N/A 0x56 2 Production identification number Table 34 SERIAL_NUM R N/A 0x58 2 Serial number Table 35 1 N/A means not applicable
ADIS16210 SENSOR DATA OUTPUT DATA REGISTERS Inclinometers The ADIS16210 provides a set of output registers for three Registers XINCL_OUT (Table 13),YINCL_OUT (Table 14), orthogonal axes of acceleration:incline angles,internal and ZINCL_OUT (Table 15)provide access to incline angle temperature,and power supply. data for each axis.For example,set DIN=Ox0E00 to request y-axis data(YINCL_OUT).Use the following process to Accelerometers translate the contents of these registers into degrees () The accelerometers respond to both static(gravity)and dynamic 1. Convert the 16-bit,twos complement number into a acceleration using the polarity shown in Figure 11.XACCL_OUT decimal equivalent. (Table 9),YACCL_OUT (Table 10),and ZACCL_OUT (Table 11) provide user access to digital calibrated accelerometer data for Multiply the decimal equivalent by 180. each axis.For example,use DIN =0x0400 to request the x-axis 3 Divide the result of Step 2 by 32,768. data(XACCL_OUT).After reading the contents of one of these Table 16 provides several examples of this data format. registers,convert the 16-bit,twos complement number into a decimal equivalent,and then divide that number by 16,384 to Table 13.XINCL_OUT (Base Address=0x0C),Read Only convert the measurement into units of gravity(g).Table 12 Bits Description provides several examples of this data format. [15:0] X-axis inclinometer output data,binary, 0°=0x0000,1L5B=180/32,768=-0.0055°LSB Table 9.XACCL_OUT(Base Address=0x04),Read Only Table 14.YINCL_OUT(Base Address =0x0E),Read Only Bits Description [15:01 X-axis accelerometer output data,twos complement, Bits Description 1LSB=1g÷16,384=~61μg/LSB,0g=0x0000 [15:0] Y-axis inclinometer output data,binary, 0°=0x0000,1LSB=180°/32,768=-0.055°/LSB Table 10.YACCL_OUT(Base Address=0x06),Read Only Bits Description Table 15.ZINCL OUT (Base Address=0x10),Read Only [150] Y-axis accelerometer output data,twos complement, Bits Description 1LSB=1g÷16,384=~61μg/LSB,0g=0x0000 [15:0] Z-axis inclinometer output data,binary, 0°=0x0000,1LSB=180°/32,768=~0.0055°LSB Table 11.ZACCL_OUT(Base Address=0x08),Read Only Bits Description Table 16.Incline Angle Data Format Examples [15:0] Z-axis accelerometer output data,twos complement, Orientation Decimal Hex Binary 1LsB=1g÷16384=~61μg/SB,0g=0x0000 +179.9945° +32,767 0x7FFF 0111111111111111 +0.011° +2 0x0002 0000000000000010 Table 12.Accelerometer Data Format Examples +0.0055° +1 0x0001 0000000000000001 Orientation(g) Decimal Hex Binary 0° 0 0x0000 0000000000000000 +1.7 +27.853 0x6CCD 0110110011001101 -0.0055° 1 OxFFFF 1111111111111111 +1 +16,384 0x4000 0100000000000000 -0.011° 2 OxFFFE 1111111111111110 +2/16,384 +2 0x0002 0000000000000010 -180° -32,768 0x8000 1000000000000000 +1/16,384 +1 0x0001 0000000000000001 0 0 0x0000 0000000000000000 Figure 11 through Figure 16 provide orientation examples and -1/16,384 -1 OxFFFF 1111111111111111 the associated output values for each accelerometer and incli- -2/16,384 -2 OxFFFE 1111111111111110 nometer register.These examples assume the factory default -1 -16384 0xC000 1100000000000000 configuration for the gravity vector(z-axis,pointed up).See the -1.7 -27,853 0x9333 1001001100110011 MSC_CTRL (Table 27)for additional options for gravity vector definitions. Rev.A|Page 9of 20
ADIS16210 Rev. A | Page 9 of 20 SENSOR DATA OUTPUT DATA REGISTERS The ADIS16210 provides a set of output registers for three orthogonal axes of acceleration: incline angles, internal temperature, and power supply. Accelerometers The accelerometers respond to both static (gravity) and dynamic acceleration using the polarity shown in Figure 11. XACCL_OUT (Table 9), YACCL_OUT (Table 10), and ZACCL_OUT (Table 11) provide user access to digital calibrated accelerometer data for each axis. For example, use DIN = 0x0400 to request the x-axis data (XACCL_OUT). After reading the contents of one of these registers, convert the 16-bit, twos complement number into a decimal equivalent, and then divide that number by 16,384 to convert the measurement into units of gravity (g). Table 12 provides several examples of this data format. Table 9. XACCL_OUT (Base Address = 0x04), Read Only Bits Description [15:0] X-axis accelerometer output data, twos complement, 1 LSB = 1 g ÷ 16,384 = ~61 μg/LSB, 0 g = 0x0000 Table 10. YACCL_OUT (Base Address = 0x06), Read Only Bits Description [15:0] Y-axis accelerometer output data, twos complement, 1 LSB = 1 g ÷ 16,384 = ~61 μg/LSB, 0 g = 0x0000 Table 11. ZACCL_OUT (Base Address = 0x08), Read Only Bits Description [15:0] Z-axis accelerometer output data, twos complement, 1 LSB = 1 g ÷ 16,384 = ~61 μg/LSB, 0 g = 0x0000 Table 12. Accelerometer Data Format Examples Orientation (g) Decimal Hex Binary +1.7 +27,853 0x6CCD 0110 1100 1100 1101 +1 +16,384 0x4000 0100 0000 0000 0000 +2/16,384 +2 0x0002 0000 0000 0000 0010 +1/16,384 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 −1/16,384 −1 0xFFFF 1111 1111 1111 1111 −2/16,384 −2 0xFFFE 1111 1111 1111 1110 −1 −16,384 0xC000 1100 0000 0000 0000 −1.7 −27,853 0x9333 1001 0011 0011 0011 Inclinometers Registers XINCL_OUT (Table 13), YINCL_OUT (Table 14), and ZINCL_OUT (Table 15) provide access to incline angle data for each axis. For example, set DIN = 0x0E00 to request y-axis data (YINCL_OUT). Use the following process to translate the contents of these registers into degrees (°): 1. Convert the 16-bit, twos complement number into a decimal equivalent. 2. Multiply the decimal equivalent by 180. 3. Divide the result of Step 2 by 32,768. Table 16 provides several examples of this data format. Table 13. XINCL_OUT (Base Address = 0x0C), Read Only Bits Description [15:0] X-axis inclinometer output data, binary, 0° = 0x0000, 1 LSB = 180°/32,768 = ~0.0055°/LSB Table 14. YINCL_OUT (Base Address = 0x0E), Read Only Bits Description [15:0] Y-axis inclinometer output data, binary, 0° = 0x0000, 1 LSB = 180°/32,768 = ~0.055°/LSB Table 15. ZINCL_OUT (Base Address = 0x10), Read Only Bits Description [15:0] Z-axis inclinometer output data, binary, 0° = 0x0000, 1 LSB = 180°/32,768 = ~0.0055°/LSB Table 16. Incline Angle Data Format Examples Orientation Decimal Hex Binary +179.9945° +32,767 0x7FFF 0111 1111 1111 1111 +0.011° +2 0x0002 0000 0000 0000 0010 +0.0055° +1 0x0001 0000 0000 0000 0001 0° 0 0x0000 0000 0000 0000 0000 −0.0055° −1 0xFFFF 1111 1111 1111 1111 −0.011° −2 0xFFFE 1111 1111 1111 1110 −180° −32,768 0x8000 1000 0000 0000 0000 Figure 11 through Figure 16 provide orientation examples and the associated output values for each accelerometer and inclinometer register. These examples assume the factory default configuration for the gravity vector (z-axis, pointed up). See the MSC_CTRL (Table 27) for additional options for gravity vector definitions
AD1IS16210 1066 Figure 11.Inclinometer Output Example,0 Tilt Figure 14.Inclinometer Output Example,+30Y-Axis Tilt ay EC888 Figure 12.Inclinometer Output Example,-30Y-Axis Tilt Figure 15.Inclinometer Output Example,+30X-Axis Tilt Figure 13.Inclinometer Output Exampls,-30X-Axis Tilt Figure 16.Inclinometer Output Example,180Tilt Table 17.Orientation/Output Examples for Z-Axis Gravity Orientation' Register Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 XACCL OUT 0 0 -8192 0 +8192 0 YACCL OUT 0 -8192 0 +8192 0 0 ZACCL_OUT +16,384 +14,189 +14,189 +14,189 +14,189 -16,384 XINCL OUT 0 0 -5462 0 +5462 -32,768 YINCL OUT 0 -5462 0 +5462 0 -32,768 ZINCL OUT +16,384 +10,922 +10922 +10.922 +10,922 -16,384 Register setting for Z-axis gravity orientation is MSC_CTRL[7:0]=xxxx xx10. Rev.A|Page 10 of 20
ADIS16210 Rev. A | Page 10 of 20 09593-012 aX aZ aY Figure 11. Inclinometer Output Example, 0° Tilt 09593-013 aZ aY aX Figure 12. Inclinometer Output Example, −30° Y-Axis Tilt 09593-016 aZ aY aX Figure 13. Inclinometer Output Exampls, −30° X-Axis Tilt 09593-014 a a X Y aZ Figure 14. Inclinometer Output Example, +30° Y-Axis Tilt 09593-017 aX aY aZ Figure 15. Inclinometer Output Example, +30° X-Axis Tilt 09593-015 aX aZ aY Figure 16. Inclinometer Output Example, 180° Tilt Table 17. Orientation/Output Examples for Z-Axis Gravity Orientation1 Register Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 XACCL_OUT 0 0 −8192 0 +8192 0 YACCL_OUT 0 −8192 0 +8192 0 0 ZACCL_OUT +16,384 +14,189 +14,189 +14,189 +14,189 −16,384 XINCL_OUT 0 0 −5462 0 +5462 −32,768 YINCL_OUT 0 −5462 0 +5462 0 −32,768 ZINCL_OUT +16,384 +10,922 +10,922 +10,922 +10,922 −16,384 1 Register setting for Z-axis gravity orientation is MSC_CTRL[7:0] = xxxx xx10