点击切换搜索课件文库搜索结果(23)
文档格式:PPT 文档大小:2.2MB 文档页数:46
《大学文科数学》课程PPT教学课件(微积分)第一章 微积分的基础和研究对象 1-2 微积分的研究对象——函数
文档格式:PPT 文档大小:722.5KB 文档页数:22
3.2微积分基本公式 3.2.1原函数和不定积分的概念 3.2.2基本积分表 3.2.3微积分基本公式
文档格式:DOC 文档大小:979KB 文档页数:20
[填空题] 1.数项级数 1 的和为一。 (2n-1)(2n+1) 2 2.数项级数(-1) 的和为cosl。 n=(2n)! 注:求数项级数的和常用的有两种方法,一种是用和的定义,求部分和极限;另一种 是将数项级数看成是一个函数项级数在某点取值时的情况,求函数项级数的和函数在此点 的值。 3.设an>0,p>1,且lim(n(en-1)an)=1,若级数∑an收敛,则p的取值范围是 n→∞ n= (2,+∞)。 1 分析:因为在n→∞时,(en-1)与是等价无穷小量,所以由 n lim(n(en-1)an)=1可知,当n→∞时,an与是等价无穷小量由因为级数 n→ an收敛,故 -1收敛,因此p>2 n 4.幂级数an(x-1)在处x=2条件收敛,则其收敛域为[0,2] 分析:根据收敛半径的定义,x=2是收敛区间的端点,所以收敛半径为1。由因为在
文档格式:PPT 文档大小:917.5KB 文档页数:62
4.1数值微积分 4.1.1 近似数值极限及导数 4.1.2 数值求和与近似数值积分 4.1.3 计算精度可控的数值积分 4.1.4 函数极值的数值求解 4.1.5 常微分方程的数值解 4.2矩阵和代数方程 4.2.1 矩阵运算和特征参数 4.2.2 矩阵的变换和特征值分解 4.2.3 线性方程的解 4.2.4 一般代数方程的解 4.3 概率分布和统计分析 4.3.1 概率函数、分布函数、逆分布函数和随机数的发生 4.3.2 随机数发生器和统计分析指令 4.4 多项式运算和卷积 • 4.4.1 多项式的运算函数 • 4.4.2 多项式拟合和最小二乘法 • 4.4.3 两个有限长序列的卷积
文档格式:DOC 文档大小:471.5KB 文档页数:8
5-6-1场论初步:三场与三度 5-6-1三场:无旋场、无源场和调和场 5-6-2三度算子在柱、球坐标系下的表示 第二十一讲三场与三度 课后作业: 课后作业: 阅读:第五章第六节:无源场和保守场pp.182--187 预习:第六章第一节:无源场和保守场pp.182-187 作业:习题6:pp.187--188:1;2;3,(2);4,(2);8;9. 5-6场论初步:三场与三度 56-1三个曲型场
文档格式:DOC 文档大小:221KB 文档页数:4
习题与补充题 习题 1.证明曲面r= acos(pcos, bsin(pcos,csinθ)是椭球面,并求其法向量,切平 面及曲线坐标。 求圆锥的参数方程和它的切平面 3.证明曲面 (1)r=u.v, 是椭圆抛物面; (2)r=(a(u+v),b(u-V,2vu)是双曲抛物面 4.求题3中各曲面的法向量和切平面。 5.求旋转曲面r=( ucos, using,f(u)(0
文档格式:DOC 文档大小:835.5KB 文档页数:7
第四章重积分 4-1重积分的概念与性质 4-1-1引言、背景 4-1-2重积分定义 4-1-3重积分性质 第十一讲二重积的概念与性质中的应用 课后作业: 阅读:第四章第一节重积分的概念与性质pp97-101 预习: 第二节二重积分的计算pp102-109 作业:第四章习题1:p.102:1,(1);2,(1);3,(2);4;5:8,(1)(2). 4-1-1引言、背景 定积分作为积分和式这种概念向多元函数的推广,就是重积分例一曲顶柱体的体积曲顶柱体( sylinder)是空间一区域Ω,由三张曲
文档格式:DOC 文档大小:373KB 文档页数:7
第五章向量分析 第二十讲 Stokes公式 5-5-1 Stokes公式 5-5-2旋度及其物理意义 课后作业: 阅读:第五章第五节: Gauss公式和 Stokes公式pp.173--181 预习:第五章第六节:无源场和保守场pp.182-187 作业:习题5:pp181-182:11),(3),(5),(7);2;33);4,(1);5:6. 5-5 Stokes公式 本节专门讨论空间向量场 F(x,y, =)=X(x,y, =)i+Y(x, y, s)j+Z(x,y, =k 5-5-1 Stokes公式
文档格式:DOC 文档大小:708.5KB 文档页数:6
第三节曲线的曲率与挠率 第十讲曲线的曲率与挠率 课后作业: 阅读:第三章第三节曲线的曲率与挠率pp87-94 预习:第三章第四节在天体力学中的应用p.94-96 作业: 1.在下列曲线的曲率k和挠 (1) F=(acht, asht, at): 2)F=(-sint, 1-cost, 1) (3)F=( t sInt, t cos t,an)(圆锥曲线) (4)F=(r2x2)
文档格式:PPT 文档大小:1.15MB 文档页数:51
掌握牛顿运动定律及其适用条件,能用微积分方法求解一维变力作用下的简单质点动力学问题。 §2-1 牛顿运动定律、力的概念、惯性参照系 §2-2 力学单位制和量纲 §2-3 牛顿运动定律应用举例
123下页
热门关键字
搜索一下,找到相关课件或文库资源 23 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有