点击切换搜索课件文库搜索结果(38)
文档格式:DOC 文档大小:521.5KB 文档页数:29
本节所讨论的问题是任何非零赋范空间上是否有非零线性 连续泛函?如果有,是否有足够多?这些问题与下面的泛函延拓 问题有关,即在个子空间(那怕是有限维子空间)上线性连续泛 函是否可以延拓成为整个空间上的线性连续泛函而保持范数不 变?这些都是泛函分析中的最基本问題 我们把问题提得更具体一些,设X是线性赋范空间
文档格式:PDF 文档大小:10.38MB 文档页数:547
泛函分析是近代数学中一重要分支,起源于古典分析,它将线性代数、线性常与偏微分方程、积分方程、变分学、逼近论中具有共同特征的问题进行抽象概括,且综合了代数拓扑和分析结构于一体。泛函分析的基本概念建立于本世纪初,成熟于50年代,其内容已渗透到逼近论、偏微分方程、概率论、最优化理论等各方面。近十几年来泛函分析在工程技术方面的应用日益广泛和有效国内外技术科学的论文、专著常引用泛函分析的内容和方法,获取学位要通过泛函分析考试,工科院校的本科或研究生要开设泛函分析课程,因而我国迫切需要适合工科院校和科技工作者的泛函分析入门书。 第一章 度量空间 第二章 赋范空间、巴拿赫( Banach)空间 第三章 内积空间、希耳伯特(Hilbert)空间 第四章 赋范和Banach空间的基本定理 第五章 Banach不动点定理、逼近理论 第六章 赋范空间线性算子的谱论 第七章 赋范空间上的紧线性算子及其谱
文档格式:DOC 文档大小:306.5KB 文档页数:20
在这一章中,我们将研究从线性赋范空间X到另一个线性赋 范空间F中的映照,亦称算子.如果Y是数域,则称这种算子为泛 函.算子和泛函我们并不陌生.例如微分算子D=云就是从连续 可微函数空间C[an6]到Ca,b]E的算子,而黎曼积分(t)dt 就是连续函数空间Ca,b]上的泛函.如果说函数是数和数之间 的对应,那末算子可说是函数和函数之间的对应,不过这是更高 级的对应而巳
文档格式:PDF 文档大小:233.39KB 文档页数:15
1 Hilbert空间上线性泛函与线性算子的表现定理, 2自伴算子的基本性质。 3酉算子与正常算子的概念与属性
文档格式:PDF 文档大小:175.49KB 文档页数:7
1、实空间线性泛函的控制延拓定理。 2、复空间线性泛函的控制延拓定理保范延拓定理
文档格式:PDF 文档大小:175.49KB 文档页数:7
1、实空间线性泛函的控制延拓定理。 2、复空间线性泛函的控制延拓定理 3、保范延拓定理。 4、延拓定理的推论及其意义
文档格式:PDF 文档大小:283.63KB 文档页数:9
本章首先讨论线性算子的有界性和有界线性算子的空间,然后叙述关于线性算子和线性 泛函的若干基本定理,它们是共鸣定理、开映射定理、闭图像定理以及Hahn- Bana ch延拓 定理(包括分析形式和几何形式).这些定理在整个泛函分析理论中有着基本的重要作用 本章还将介绍这些定理在 Fourie分析、积分方程、微分方程适定问题以及逼近论和近似计 算等方面的应用
文档格式:PDF 文档大小:172.36KB 文档页数:5
本章是为了介绍泛函分析中的一些基本概念并提供全书的基础知识 正如前言中所提到的,泛函分析的基础建立在集合的两种结构之上,一种是 代数结构即线性结构,另一种是拓扑(本书中体现为度量)结构.本章将首先介 绍线性空间、度量空间、赋范空间、内积空间以及拓扑空间的公理系统,讨论它 们之间的相互关系;
文档格式:PDF 文档大小:233.39KB 文档页数:15
1 Hilbert 空间上线性泛函与线性算子的表现定理。 2 自伴算子的基本性质。 3 酉算子与正常算子的概念与属性
文档格式:PDF 文档大小:283.63KB 文档页数:9
本章首先讨论线性算子的有界性和有界线性算子的空间,然后叙述关于线性算子和线性 泛函的若干基本定理,它们是共鸣定理、开映射定理、闭图像定理以及 Hahn--Banach 延拓 定理(包括分析形式和几何形式). 这些定理在整个泛函分析理论中有着基本的重要作用. 本章还将介绍这些定理在 Fourie 分析、积分方程、微分方程适定问题以及逼近论和近似计 算等方面的应用
1234下页
热门关键字
搜索一下,找到相关课件或文库资源 38 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有