点击切换搜索课件文库搜索结果(3733)
文档格式:PPT 文档大小:879KB 文档页数:27
一、协方差 如果X与Y相互独立,则 E{[X-E(X)][Y-E(Y)]}=E[X-E(X)]E[Y-E(Y)]=0 因此,对于任意两个随机变量X与Y,若 E{[X-E(X)][Y-E(Y)]}≠0, 则随机变量X与Y不相互独立,从而说明X与Y之间有一 定联系,因而给出如下定义
文档格式:PDF 文档大小:218.92KB 文档页数:30
一、本单元的内容要点 1函数的极值与极值点的定义 若存在点x的去心领域U(xo,),使得Vx∈U(x,δ) 有f(x)>f(xo)(f(x)
文档格式:DOC 文档大小:423KB 文档页数:8
微分学讨论题 1.设f(x,y)在点M(x0,y0)可微 af (xo, yo) af(xo, yo) =1,则∫(x,y)在点M(x0,y)的微分是( 2.已知(x+ay)x+yzy 为某个二元函数的全微分,则a=() x+ 3.设函数二=f(x,y)是由方程xz+x2+y2+2=√2确定的在点(0-)求止 (dx-√2dy) 4.设∫(x,y,z)=xy2+yz2+xx2,求 a2f(0,0,1)a2f(10.2)a2f(0,-10)03f(2,0,1) 2.2.0.0) 5.求下列函数在指定点的全微分
文档格式:PPT 文档大小:794KB 文档页数:39
1、原函数 如果在区间I 内,可导函数F( x) 的导函数为 f ( x) , 即 x  I , 都 有 F(x) = f (x) 或 dF( x) = f ( x)dx,那么函数F( x) 就称为 f ( x)或 f ( x)dx在区间I 内原函数
文档格式:DOC 文档大小:499KB 文档页数:7
第三章导数与微分 第一节导数的概念 思考题: 1.思考下列命题是否正确?如不正确举出反例 (1)若函数y=f(x)在点x处不可导,则f(x)在点x处一定不连续 答:命题错误.如y=|x|在x=0处不可导,但在此点连续 (2)若曲线y=f(x)处处有切线,则y=f(x)必处处可导 答:命题错误.如:y2=2x处处有切线,但在x=0处不可导
文档格式:DOC 文档大小:295KB 文档页数:19
5-1多项式插值的问题 前面根据区间[ab上给出 的节点做插值多项式Ln(x) 近似f(x),一般总认为L1(x)的次 数n越高逼近(x)的精度 越好,但实际上并非如此。这是 因为对任意的插值节点 ,当n>0时,L(x)不一定收敛 到∫(x),本世纪初龙格 ( Runge)就给出了一个等距节 点插值多项式Ln(x)不收 敛的f(x)的例子。他给出的函数 为f(x)=1(1+x)
文档格式:PDF 文档大小:215.11KB 文档页数:19
本章将介绍一些必要的准备知识。第一节为 Hilbert空间中基的概念,第二节为线性算子的定义,第三节为有关积分的性质,第四节将介绍框架与 Riesz基。 1. BanachHibert空间与空间设X为数域K上的线性空间,若函数:X→R+满足如下三个条件: 1.三角不等式:w(x+y)≤w(x)+w(y),x,y∈, 2.齐次性:w(ax)=lalw(x),a∈k,x∈X, 3.正定性:w(x)=0分x=0
文档格式:PDF 文档大小:469.09KB 文档页数:25
2.5 Hermite插值 插值方法 NewtonLagrange与插值的不足 y=f(x),其 NewtonLagrange与插值多项式Pn(x)与Nn(x) 满足插值条件:P(xi)=nn(xi)=f(x)i=0,12.n Newton与 Lagrange插值多项式与y=f(x)在插值节点上有相同 的函数值“过点” 但在插值节点上y=f(x)与y=Pn(x)一般不”相切”, f(xi)≠n(x)光滑性较差 Hermite插值:求与y=f(x)在插值节点X1.n上具有相同函数 值及导数值(甚至高阶导数值)的插值多项式
文档格式:PDF 文档大小:131.29KB 文档页数:25
化二次型为标准形 化二次型为标准形主要有两种方法:(1)正交变换法;(2)配方法. 例1用正交变换法将二次型f(x1,x2,x3)=2x2+x2-4x1x2 -4x2x3化为标准形,并求出所用的正交变换矩阵. 解二次型的矩阵为
文档格式:DOC 文档大小:265.5KB 文档页数:6
一阶导数应用 1、函数的极值 ①P82,定义:如在x邻域内,恒有f(x)≤f(x),(f(x)≥f(x) ,则称f(x)为函数f(x)的一个极大(小)值。 可能极值点,f(x)不存在的点与f(x)=0的点。(驻点) 驻点一极值点 ②判别方法
首页上页7891011121314下页末页
热门关键字
搜索一下,找到相关课件或文库资源 3733 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有