点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:2.22MB 文档页数:79
6.1 有限元建模概述 6.2 几何模型的建立 6.3 单元类型及单元特性 6.4 网格划分方法 6.5 边界条件定义
文档格式:PDF 文档大小:531.57KB 文档页数:6
目前密集冷却工艺已广泛用于生产高强度带钢,但是该技术冷却速率较快的特点易造成带钢冷却不均匀等问题,导致带钢残余应力过大,进而产生边浪等板形缺陷.本文利用有限元方法,使用ABAQUS有限元软件建立某700 MPa级高强度带钢在密集冷却工艺下的模型,实现温度-相变-应力耦合计算,并进行多个实验验证了模型的准确性.通过修改有限元模型边界条件和初始条件,研究边部遮挡和初始温差对带钢层流冷却阶段产生的残余应力分布的影响规律.对于减小带钢层流冷却过程中产生的残余应力,减小带钢进入层流冷却前的初始温差更加有效.本研究成果经过现场试验验证,可靠性较高,可用于指导该种类型高强带钢生产,以减少带钢的残余应力,提高带钢板形质量
文档格式:PDF 文档大小:679KB 文档页数:7
针对油泵齿轮轴特殊形状设计了齿轮轴精锻模具.通过有限元仿真和精锻实验研究了齿轮轴成形过程和金属流动规律.分析了对油泵齿轮轴精锻工艺中产生齿形角隅填充不满缺陷的原因:角隅填充是成形终了时成形载荷陡增的主要原因之一,由于齿轮轴精锻模具结构的特殊性,其强度无法满足齿形角隅填充所需高成形载荷的需要.基于角隅填充状况,提出了齿形端面斜面分流和环形槽分流,并对传统精锻工艺和两种分流锻造工艺进行了有限元仿真.分析结果表明两种分流方法均能有效减小齿形角隅填充时金属流动阻力,保证齿形良好填充,降低成形载荷,并且斜面分流优于环形槽分流.锻造实验验证了有限元仿真的准确性
文档格式:DOC 文档大小:334KB 文档页数:61
人教版高中语文第二册同步检测(所有单元练习,所有课文练习)
文档格式:PDF 文档大小:2MB 文档页数:24
第一节 网格质量检查 第二节 重合节点检查 第三节 重合与遗漏单元检查 第四节 带宽优化 第五节 波前处理
文档格式:PDF 文档大小:931.57KB 文档页数:4
利用MARC/AutoForge3.1元件,使用三维弹塑性热力耦合有限元方法模拟采用新型油井管用钢33Mn2V热轧制管的双道次张力减径过程,并直观地显示了三维管件材料内部和表面不同方位的金属流动、应力、应变和温度演化情况.模拟结果表明:不论是工件表面还是内部,在张力减径过程中金属流动、应变、应力和温度分布都是不均匀的;分析成品管显微组织时应当考虑这些因素
文档格式:PDF 文档大小:874.7KB 文档页数:5
利用ANSYS有限元分析软件,对45#钢特定形状底盘零件感应加热、冷却的全过程进行了温度场的二维有限元模拟分析,进而利用工件冷却前后内部温度变化的模拟结果和45#钢的CCT曲线获得了冷却后工件内部组织分布情况.利用工业条件下的零件热处理实验对温度场和微观组织的模拟结果进行了验证,实验与模拟结果吻合良好
文档格式:PDF 文档大小:1.57MB 文档页数:11
利用背散射电子衍射技术对高速冲击前后高锰钢样品强制剪切区域的晶粒进行准原位观察,分析了剪切区域不同位置晶粒的相变情况,并借助有限元模拟及受力计算对不同晶粒相变程度差异的原因做了进一步分析.结果表明,在高速变形下,应力应变水平、奥氏体取向及晶粒间的相互作用共同影响TRIP行为:应力应变水平越高,相变程度越大;由于帽型样中剪切应力的存在,相比于近〈111〉取向奥氏体,近〈100〉和近〈110〉取向奥氏体相变程度更大,近〈110〉取向相变程度最大.具有有利取向的奥氏体,晶粒尺寸越大,其相变行为受周围晶粒影响越小,越容易充分相变;具有有利取向的长条状奥氏体晶粒,若其两侧晶粒难相变,则该晶粒相变将受到束缚;带有尖角的晶粒,变形时应力集中难以释放,易发生相变;当晶粒的孪生分力大于滑移,但其最大和次大的孪生分力相差不大,可能导致在这两个方向孪生互相竞争,反而不易相变.高速变形时体心马氏体多在晶界应力集中处产生,很少在晶粒内部大量产生,形态多为细片状,变体选择强
文档格式:PDF 文档大小:299.35KB 文档页数:5
为了获得带钢瓢曲发生的临界张力条件模型,建立抑制其产生的有效工艺措施,运用有限元中几何非线性屈曲计算方法,结合冲压领域的弹塑性屈曲理论,定量研究了退火炉内的七项关键因素——导向辊辊形、来料板形、带钢宽度、横向温差、焊缝位置、辊面摩擦系数和总张力——对带钢张应力横向分布的影响规律和作用机制.仿真发现导向辊辊形、带钢厚度等对张应力横向分布影响最为显著,揭示了瓢曲行为与横向张应力分布的内在关系,为制定抑制“热瓢曲”提供了有效的技术思路,并取得了良好的现场控制效果
文档格式:PDF 文档大小:807.46KB 文档页数:6
针对特厚板再结晶型轧制,板坯中心难以变形导致心部晶粒粗大的问题,使用Q345B钢,采用有限元方法建立了特厚板轧制的仿真模型,以研究在特厚板轧制过程中引入厚度方向上的温度梯度对钢板心部应变的影响,并与传统均温轧制进行对比,预测了两种温度场条件下奥氏体再结晶的晶粒尺寸.采用大试样平面应变实验对模拟结果进行验证.研究结果表明,温度梯度轧制有利于增加坯料心部应变量,最大增加了61.35%.计算和实验结果显示温度梯度轧制可以减小特厚板心部晶粒尺寸,晶粒度级别提高了一个等级,说明该工艺对提高特厚板中心区域性能有利
首页上页89101112131415下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有