点击切换搜索课件文库搜索结果(112)
文档格式:PPT 文档大小:943.5KB 文档页数:23
4.4函数的极值与最值 设函数y=f(x)在(a,b)内图形如下图:在处的函数值f(5)比它附近各点的函数值都要小;而在52处的函数值f(52)比它附近各点的函数值都要大;但它们又不是整个定义区间上的最小、最大者,而且f()>f(2)将这样的点称为极小值点、极大值点
文档格式:PPT 文档大小:727.5KB 文档页数:29
连续函数是非常重要的一类函数.也是函数的一种 重要的性态.然界中的许多变量都是连续变化着的,即 在很短的时间内,们的变化都是很微小的.这种现象反 映在函数关系上,就是函数的连续性;对函数曲线来说 就是从起点开始到终点都不间断
文档格式:PPT 文档大小:469.5KB 文档页数:15
单调性是函数的重要性态之一,也是本章主要内容.它既决定着函数递增和递减的状况,又有助于我们研究函数的极值、证明某些不等式、分析描绘函数的图形等。 一、函数的单调性 1.(第一章)单调增加(或减少)函数的几何解释:对应曲线是上升或下降的
文档格式:PPT 文档大小:943.5KB 文档页数:23
设函数y=f(x)在a,b)内图形如下图: y=f(x)/ 在:处的函数值()比它附近各点的函数值都要小 而在处的函数值()比它附近各点的函数值都要大; 但它们又不是整个定义区间上的最小、最大者,而且 A将这样的点称为极小值点、极大值点
文档格式:PPT 文档大小:693.5KB 文档页数:30
第一章多元函数微分学 本章学习要求: 1.理解多元函数的概念。熟悉多元函数的“点函数”表示法。 2.知道二元函数的极限、连续性等概念,以及有界闭域上连续函数的性质。会求二元函数的极限。知道极限的“点函数”表示法。 3.理解二元和三元函数的偏导数、全导数、全微分等概念
文档格式:DOC 文档大小:696KB 文档页数:6
第六节含参变量的积分 4-6-2广义含参积分 第十六讲广义含参变量积分 课后作业: 阅读:第四章第六节:含参变量积分pp.13--141 预习:第五章第一节:曲线积分pp.142--151 作业 1.证明下列积分在参变量的指定区间上一致收敛 ()xe-dx(as≤b)
文档格式:PDF 文档大小:2.24MB 文档页数:221
教学论文:“正本清源”在力学之数学及专业基础知识体系建立中的作用, 谢锡麟,2011 年 10 月稿 教改探索: 高等数学开放性实验 初步设想 教案设计: 无限小增量公式的基本理论与应用理论 教案设计: 平面运动方程及其应用 教案设计: 闭区间上Riemann积分的实际来源及数学定义 教案设计: 闭区间上Riemann积分的应用理论 教案设计: 有限维Euclid空间中隐映照定理的应用 教学大纲:《数学分析(Ⅰ)》(一年制)(2011年8月更新) 教学大纲:《数学分析(Ⅱ)》(一年制)(2011年8月更新) 教学大纲:《经典力学数学名著选讲(有关高等微积分)》(2011年8月更新) 教学大纲:《张量分析与微分几何基础》(2011年8月更新) 试卷及分析:2010-2011学年第一学期《数学分析(Ⅰ)》 试卷及分析:2010-2011学年第二学期《数学分析(Ⅱ)》 试卷: 2011年暑期《经典力学数学名著选讲(有关高等微积分)》 试卷及分析:2010-2011学年第一学期《张量分析与微分几何基础》 试卷及分析:2009-2010学年第一学期《连续介质力学基础》 试卷: 2009-2010学年第二学期《涡量与涡动力学基础》 试卷: 2010-2011 学年第二学期《涡量与涡动力学基础》
文档格式:PDF 文档大小:1.98MB 文档页数:164
《简明复分析》较系统地讲述了复变函数论的基本理论和方法。全书共分6章,内容包括:微积分,Cauchy积分定理与Cauchy积分公式,Weierstrass级数理论,Riemann映射定理,微分几何与Picard定理,多复变数函数浅引等。每章配有适量习题,供读者选用。《简明复分析(中国科学技术大学精品教材)》试图用近代数学的观点和方法处理复变函数内容,并强调数学的统一性。例如,用微分几何的初步知识,对Picard大、小定理给出简洁的证明;强调变换群的概念,利用Pompeiu公式给出一维a-问题的解,并用此来证明Mittag-Leffler定理与插值定理等,利用简单区域上的全纯自同构群证明Poincare定理;对多复变数函数做了简明的介绍。 第1章 微积分 第2章 Cauchy积分定理与Cauchy积分公式 第3章 Weierstrass级数理论 第4章 Riemann映射定理 第5章 微分几何与Picard定理 第6章 多复变数函数浅引
文档格式:PDF 文档大小:11.3MB 文档页数:586
第一章 实数集与函数 第二章 数列极限 第三章 函数极限 第四章 函数的连续性 第五章 导数和微分 第六章 微分中值定理及其应用 第七章 实数的完备性 第八章 不定积分 第九章 定积分 第十章 定积分的应用 第十一章 反常积分 第十二章 数项级数 第十三章 函数列与函数项级数 第十四章 幂级数 第十五章 傅里叶级数 第十六章 多元函数的极限与连续 第十七章 多元函数微分学 第十八章 隐函数定理及其应用 第十九章 含参量积分 第二十章 曲线积分 第二十一章 重积分 第二十二章 曲面积分 第二十三章 流形上微积分学初阶
文档格式:DOC 文档大小:307.5KB 文档页数:6
第六章定积分 (The definite integration) 第十五讲 Newton-Leibniz-公式与定积分的计算 课后作业: 阅读:第六章6.:pp6--17 预习:6.4,6.5,6:p176-19 练习pp174176习题6.3:1,7,8中的单数序号小题 作业pp.174176:习题6.3:1,(2),(6)2,(2)4;5;7,(4^,(6),(10) (1)8(,114;1;1720 6-3牛顿(Newton)一莱布尼兹(Leibnitz)公式 6-3-1变上限定积分 (一)变上限积分 设f∈Ra,b,x∈[a,b],F(x)=f(t)dt是定义在[a,b]上 a 的一个函数,称之为变上限积分 这里有一个十分重要的结果:变上限积分总是连续函数
首页上页56789101112下页末页
热门关键字
搜索一下,找到相关课件或文库资源 112 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有