点击切换搜索课件文库搜索结果(219)
文档格式:DOC 文档大小:471.5KB 文档页数:8
5-6-1场论初步:三场与三度 5-6-1三场:无旋场、无源场和调和场 5-6-2三度算子在柱、球坐标系下的表示 第二十一讲三场与三度 课后作业: 课后作业: 阅读:第五章第六节:无源场和保守场pp.182--187 预习:第六章第一节:无源场和保守场pp.182-187 作业:习题6:pp.187--188:1;2;3,(2);4,(2);8;9. 5-6场论初步:三场与三度 56-1三个曲型场
文档格式:DOC 文档大小:377.5KB 文档页数:8
第六章定积分 (The definite integration) 第十六讲定积分的计算方法 课后作业: 阅读:第六章6.4,6.5,6.6:pp16--193 预习:第七章7.1,7.2,7.3:pp9--210. 练习pp.182-184:习题6.4:1;2;3,7,8中的单数序号小题;11; 17;20 p.16-188习6.5:12;3,中的单数序号小题;4;6; 8;9;11;24;26;27 作业pp.182-184:习题6.4:3,中的双数序号小题;5;6; 7,(6),(8),(10);8,(2),(4);9;10;1516;18;21 1720
文档格式:DOC 文档大小:185KB 文档页数:3
第七章定积分 The definite integration 习题讨论 题目: ayx-b 1,计算1= -dx. (x-b)2+a2 2,计算m=(n)dx,其中n,m为自然数。 0 3,计算J=1 --dx,其中x是x的整数部分。 sinx sinx 4,一研究1= (+,= dx,p>0的敛散性 +sinx 解答: aypx-b
文档格式:DOC 文档大小:389.5KB 文档页数:7
第六章常微分方程 附加条件 y(a)=yu,y(b)=y2 称为边值条件( boundary condition) 满足微分方程,并且适合定解条件的解称为微分方程的特解 (special solution) 微分方程的存在唯一性定理 存在唯一性定理:对一阶初值问题:=f(xy ,若二元函数 y(x0) f(x,y)在矩形D={(x,y):x-x0Ay-y0B}连续, 且偏导数(xy存在并有界则存在正数h,使得上述初值问题 在区间[x。-h,x+h上存在有唯一的解 证明思路:
文档格式:DOC 文档大小:586KB 文档页数:9
第六章常微分方程 6-3高阶线性方程 6-3-1高阶线性常系数方程的解 6-3-2 Euler方程 第二十三讲高阶线性常系数阶线性方程 6-3-1高阶线性常系数齐次方程的解 考察n阶线性常系数齐次方程 d x dx d +am+.+ax=o dr dt d t 其中a1,an为实常数 或记成 L(Dx=o 由上一段的讨论知道方程L(Dx=0在区间(-∞,+∞)有n个线性无关解
文档格式:DOC 文档大小:384KB 文档页数:8
1:若方程y+p(x)y=0的一个特解为y=cos2x则该方程满足初值条件y(0)=2的 特解为() A cos 2x+2 B cos 2x+1 C2 coS x cos 2X 答案D 解:将y=cos2x代入方程求出函数p(x)再求解方程得到正确答案为D.也可以作 如下分析一阶线性齐次方程 y+p(x)y=0任意两个解只差一个常数因子所以A,B,C三个选项都不是该方程的解 2微分方程“卫
文档格式:DOC 文档大小:338KB 文档页数:8
第十八讲 Newton- Leibniz公式与定积分的计算 课后作业: 阅读:第七章74:256-262;75:pp263-268; 预习:76:pp269--285;77:p.288-295 练习pp262-263:习题74 复习题全部习题1,(1),(2);2,(1);3,单数题号 51),(2 pp.268-269:习题75 习题1、1)(2)(3)(5)(6);2,(1)(2)(3)(5),(7); 3,(1)(2) 作业pp262--263:习题74 习题13,(4);2,(2);3,双数题号;5(3),(4) pp268-269:习题7.5
文档格式:DOC 文档大小:361.5KB 文档页数:9
第十九讲定积分的应用 课后作业: 阅读:第七章7.6:pp269-285;7.7:pp.288-295 预习:78:pp.296-310 练习pp286--287:习题7.6 全部复习题,习题1,(1),(2);2,(1);3、1)、2);4;6; 7(1)(2);8;9(1);10,(1),(2);l1(1) pp295--296:习题77 l;2(1):3;5:;7
文档格式:DOC 文档大小:515.5KB 文档页数:5
习题讨论 题目: 1,计算I dx ta 2,计算lm=r(mndt,其中Bm为自然数 8,计算J=(11 xax,其中x是x的整数部分 sIn x sIn x 4,一研究l1= dx, dx,p>O的敛散性 x +sinx 5,设f:(-∞+∞)→R,在任何有限区间可积,且有limf(x)=A, 明,Ⅵt,()=「((x+0-f(x)=0 第七章定积分
文档格式:DOC 文档大小:397KB 文档页数:9
第十二章重积分 12-1重积分的概念与性质 12-2二重积分的计算 12-3三重积分的计算 12-4对空间曲面积分 12-Exe-1习题讨论:重积分的计算 三重积的计算习题讨论 讨论题目: 计算累次积分 1=dx Sindy+dx Sindy 2√x 2.计算二重积分=y-x-yo, 其中D={xy)Maxp)≤ 8求二重积分:1=xy
首页上页910111213141516下页末页
热门关键字
搜索一下,找到相关课件或文库资源 219 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有