点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:325.65KB 文档页数:61
一、向量及运算 1.向量的定义及向量的坐标表示; 2. 向量的基本运算:+、— 和数乘; 3.向量的重要运算:数量积,向量积,混合积
文档格式:PPT 文档大小:634.5KB 文档页数:34
一、两向量的数量积 实例一物体在常力F作用下沿直线从点M1移动 到点M2,以5表示位移,则力F所作的功为 W= cos0(其中为F与的夹角) 启示两向量作这样的运算,结果是一个数量. 定义向量与b的数量积为a.b a.b=cos0(其中为a与b的夹角)
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
文档格式:DOC 文档大小:95KB 文档页数:4
一、标准正交基 定义5欧氏空间V的一组非零的向量如果它们两两正交,就称为一个正交 向量组 按定义,由单个非零向量所成的向量组也是正交向量组 正交向量组是线性无关的这个结果说明,n维欧氏空间中,两两正交的非 零向量不能超过n个
文档格式:PDF 文档大小:325.65KB 文档页数:61
习题课 本章主要内容: 向量及运算 1.向量的定义及向量的坐标表示; 2.向量的基本运算和数乘 3.向量的重要运算:数量积,向量积,混合积
文档格式:PPT 文档大小:1.65MB 文档页数:37
4.1 联立方程偏差 4.2 测量误差偏差 4.3 工具变量法 4.4 二阶段最小二乘法 4.5 弱工具变量 4.6 对工具变量外生性的过度识别检验 4.7 对解释变量内生性的豪斯曼检验:究竟该用OLS还是IV 4.8 如何获得工具变量 4.9 工具变量法的Stata实例
文档格式:PDF 文档大小:113.06KB 文档页数:31
一、问题的提出 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相 应地分成许多部分量,且U等于部分量之和),并 且在闭区域D内任取一个直径很小的闭区域do 时,相应地部分量可近似地表示为f(x,y)do的 形式,其中(x,y)在do内这个f(x,y)do称为 所求量U的元素,记为dU,所求量的积分表达式 为
文档格式:PPT 文档大小:456KB 文档页数:16
上一节我们定义了向量组的秩,如果把矩阵的每一行看成 一个向量,那么矩阵就是由这些行向量组成的。同样,如果把 矩阵的每一列看成一个向量,则矩阵也可以看作是由这些列向 量组成的。 定义3.4.1所谓矩阵的行秩是指矩阵的行向量所组成的 向量组的秩,矩阵的列秩是由矩阵列向量所称向量组的秩
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
文档格式:PPT 文档大小:1.56MB 文档页数:59
理解结构体的概念和它对于编程的重要性; 理解定义结构体类型和定义结构体变量的区别; 能够用“ .”和“->”分量运算符操作结构体变量和指向结构体的指针变量; 能够定义并使用结构体数组; 了解用typedef定义数据类型。 定义结构体类型变量的方法; 结构体变量的引用; 结构体变量的初始化; 结构体数组; 指向结构体类型数据的指针; 用指针处理链表; 用typedef定义类型
首页上页1112131415161718下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有