网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(262)
北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.3.2 用一个多项式的根和另一个多项式计算结式的公式 12.3.3 用一个多项式与它的微商的结式表达该多项式的判别式
文档格式:DOC 文档大小:229KB 文档页数:4
12.3.2用一个多项式的根和另一个多项式计算结式的公式 命题设 f(x)=ax+a1x-+…+an(a≠0 (x) box\+b- + (bo=0) 如果f(x),g(x)在C[x]中的分解式为 g()= bo (x-B) ).(x-)(1) 那么 R(f,g)=ag(a)=(-1)f(B)(*) 证明在数域K上的n+m+1元多项式环K[x,y1yn21m]中,令 f(x,y,yn)=a(x-y)…(x-yn)(2) g(x,z1,m)=b(x-z)…(x-m)(3)
人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第九章 格与布尔代数
文档格式:PPT 文档大小:264.5KB 文档页数:70
9.1 格 9.2 布尔代数 9.3 子布尔代数、积布尔代数 和布尔代数同态 9.4 布尔代数的原子表示 9.5 布尔代数Br2 9.6 布尔表达式及其范式定理
《线性代数》Chapter 2(6)向量与向量空间习题课
文档格式:PPT 文档大小:256.5KB 文档页数:3
一、内容小结 1. 向量代数
河北理工学院:《高等数学》课程教学资源(PPT课件讲稿)第七章 空间解析几何与向量代数 习题课
文档格式:PPT 文档大小:2.27MB 文档页数:57
一、主要内容 1向量代数 2空间解析几何
高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第六章 代数结构
文档格式:PPT 文档大小:130.5KB 文档页数:15
第一节代数结构概述 第二节置换(1) 第二节置换(2) 第三节群 第四节子群
《高等数学》课程教学资源:考研资料:线性代数概率统计公式大全
文档格式:DOC 文档大小:822KB 文档页数:6
1、行列式 1.n行列式共有n2个元素,展开后有n!项,可分解为2行列式 2.代数余子式的性质: ①、A,和a的大小无关 ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为|A| 3.代数余子式和余子式的关系:M=(-1)AA=(-1)M 4.设n行列式D:
北京大学:《高等代数》课程教学资源(讲义)第三章 行列式(3.1-3.2)2n阶方阵的行列式(1/2)
文档格式:DOC 文档大小:287.5KB 文档页数:4
第三章3-1,3-2n阶方阵的行列式 3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
北京大学:《高等代数》课程教学资源(讲义)第三章 行列式(3.1-3.2)2n阶方阵的行列式(1/2)
文档格式:DOC 文档大小:287.5KB 文档页数:4
3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.2子空间的交与和,生成元集 4.2.3 维数公式
文档格式:DOC 文档大小:204KB 文档页数:3
4.2.2子空间的交与和,生成元集 定义4.13设a1,a2,,a,∈V,则{ka1+k2a2++ka,k∈K,i=12}是V的 一个子空间,称为由a1,a2,,a,生成的子空间,记为(aa2,,a)易见,生成的子 空间的维数等于a1,a2,…,a的秩。 定义4.14子空间的交与和 设V1,V2为线性空间VK的子空间,定义 vnv2={ VEV2},称为子空间的交 V1+V2={v+v2v∈V1,v2∈V2},称为子空间的和。 命题4.9VNV2和V1+V2都是V的子空间
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.1 线性空间的基本概念 4.1.4 线性空间的基变换,基的过渡矩阵 4.2子空间与商空间 4.2.1 线性空间的子空间的定义
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且 (=+++, n2=121+22+…+n2n (nn =tne1 +tn2++ 将其写成矩阵形式 112…ㄣn t21 (n2,n)=(1,2n2122n, :: nn2…tm 定义.11我们称矩阵 (2…n t2122…t2 T=:: Imt In2 为从2n到2的过渡矩阵
首页
上页
12
13
14
15
16
17
18
19
下页
末页
热门关键字
周易与中国审美文化
医学伦理学
中级会计
影视文学与写作
医学仪器原理
药物分析学
田径
石膏
摄影
筛选
人为什么要上大学
燃烧装置设计
平面问题理论
旅游学
胶体
过敏
古琴
电工技术与电子技术
弹性动力学
传播与沟通
ORGANIC
《中国传统文化》
《交通工程》
Web技术
Web技术应用基础
WINDOWS编程
Word
X射线衍射分析技术
スマホゲーム+新作
爱情学
安全方法论
安全防范]
安全管理
安全人
案例教学
白红 数学
板快构造与地震
办公室管理
包络]
饱和
搜索一下,找到相关课件或文库资源
262
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有