点击切换搜索课件文库搜索结果(1967)
文档格式:DOC 文档大小:68KB 文档页数:5
一、教学目标与基本要求 1、教学目标 本章从曲顶柱体的体积和平面薄片的质量这两个实际例子引入二重积分的概念,不 加以证明地指出二重积分存在的充分条件对二重积分的性质只加以叙述,而不予证明, 将三重积分自然地看成是二重积分的推广总的精神就是对概念和性质不作分析上的严 格要求,而把重点放在讨论二重积分和三重积分的计算上,计算二重积分和三重积分的 基本途径是将它们化为二次与三次积分,但在直角坐标系下计算二次与三次积分有时会 比较困难
文档格式:PPT 文档大小:175.5KB 文档页数:47
多态性(polymorphism)也是面向对象程序设计的标志 性特征。前面我们讨论过面向对象的两个重要特性一封装性和 继承性,这三大特性是相互关联的,封装性是基础,继承性是 关键,而多态性是补充。 简单地说,在C++语言中,同一程序的某个运算符或者某 个函数名在不同情况下具有不同的实现的现象,叫做多态性。 其实在C语言中,我们已经接触过多态性的应用,对于不 同类型的数据,运算符“\\”具有不同的运算含义,如果两个 操作数都是整数,那么“\\”进行整数相除,结果也是整数, 而其中一个操作数是实数类型的,那么“”进行的是数学上 普通的除法,因此,面对不同的处理对象,“”运算符有不 同意义
文档格式:PPT 文档大小:1.02MB 文档页数:10
就随机现象而言,仅仅知道可能发生哪些事件是不够 的,更重要的是对事件发生的可能性做出定量的描述.这 工就涉及到一个概念一事件的概率Probability).直观 地说,个事件的概率(记为)就是能刻画该事件发生的 可能性大小的一个数值.因此,凭直觉我们可以说,在掷 一枚硬币的试验中“出现数字面”的概率为,而在掷一颗 骰子的试验中“出现‘1’点”的概率为.但是,对一般 的事件而言,单凭直觉来确定其发生的概率显然是行不通 的,必须从客观的本质特征上寻求概率的界定方法那么 ,概率有客观性吗?数学上如何定义呢?下面,我们将逐 工步明确这些问题
文档格式:PDF 文档大小:123.71KB 文档页数:4
定理2.4.1(Weierstrass聚点原理)设E为R中有界无限集,则 E≠中 证明取互异点列Mk=(x1,x2,n)∈,由于E有界,所以{Mk k=1,2.}有界,从而{x=1.是有界集,由数学分析中已证 明的直线上的聚点原理知:x1及x1的子列x→x1这时M满足第一个坐标 收敛,对于第二个坐标x2可能不收敛,但有界由直线上的聚点原理知:x2 及x2的子列x2→x2,则Mk满足第一、第二坐标收敛。此过程继续作下去,第 n次找到的子列Mm便满足所有坐标都收敛即M→M其中M= 00 (x1,x2,xn),即M为E中的聚点。证毕 推论2.4.1有界点列必有收敛子列
文档格式:PDF 文档大小:103.3KB 文档页数:2
在数学分析中,我们己经知道,即使函数列在每一点收敛,也不能保证一致 收敛,因此,对可能在某个零测度集上不收敛的函数列而言,更谈不上一致收敛。 例如f(x)=x”处处0于,却不一致收敛。究其原因是自变量越靠近0越收 敛速度慢,只有更慢没有最慢,从而不可能一致收敛。但不难看出,只要挖去 个以1为右端点的小区间(1-6,1)后就有收敛最慢点x=1-8了,从而可以保 证一致收敛了。著名的俄国数学家叶果落夫( ETOPOB)任何可测函数都有 类似结果,即有下述定理成立
文档格式:PDF 文档大小:126.3KB 文档页数:6
改造积分定义的目的一是为了扩展可积范围,二是为了使得操作更方便。对 (R)积分而言,积分与极限交换顺序需要验证一个较为苛刻的条件:“fn(x)在E 上一致收敛于f(x)”,将“一致收敛”削弱为“处处收敛”甚至“几乎处处收 敛”是一种思路,在此介绍另一种削弱“一致收敛”条件的方法 从集合论的角度讲:“fn(x)在E上一致收敛于f(x)”是指0>0,No >0,当n>N时,E[|fn(x)-f(x)|≥0]=中,之所以我们认为“一致收敛” 条件苛刻,就在于它要求E[|fn(x)-f(x)≥0]从某项以后永远为空集
文档格式:DOC 文档大小:222.5KB 文档页数:3
固定床中颗粒间存在着网络状的空隙形成许多可供流体通过的细小通道。这些通道是曲折而且互相 交联,其截面大小和形状又是很不规则的。流体通过如此复杂的通道时的阻力(压降)自然难以进行 理论计算,必须依靠实验来解决问题。现在介绍一种实验规划方法——数学模型法。 4.3.1颗粒床层的简化模型 (1)床层的简化物理模型 在固定床内大量细小而密集的固体颗粒对流体的运动形成了很大的阻力。此阻力一方面可使流体沿 床截面的速度分布变的相当均匀,另一方面却在床层两端造成很大压降
文档格式:PDF 文档大小:965.36KB 文档页数:54
级数是研究解析函数的一个重要工具.将解析函数表示为级数不 仅有理论上的意义,而且也有使用意义,比如可利用级数计算函数的 近似值(截取幂级数的前面有限项可作为函数的近似表达式,项数取 决于要达到的近似程度)或解微分方程. 我们将看到,一个函数的解析性与一个函数可否展开成幂级数的 问题是等价的.这从另一个侧面揭示了解析函数的本质,因此我们可 以进一步地认识解析函数 本章研究复数项级数和复变函数的幂级数展开.对于某些和数学 分析中平行的结论,往往叙述而不证明
文档格式:PDF 文档大小:1.33MB 文档页数:67
在许多实际问题中,人们往往通过适当的变换把一个复杂的问题 化成简单的问题来研究.例如,通过对对数变换,把除法运算化为加 减运算,通过分式线性变换把复杂区域化为简单区域等.本张从 Fourier级数出发,引出在电学、力学、控制理论等许多工程和科学 领域中有广泛应用的积分变换 Fourier变换及其基本性质和一些简 单应用 Fourier级数的应用可在力学中振动和波动部分找到:任何振动 和波动都可表示为谐振动和谐波的叠加 Fourier级数展开 简谐振动是振动或周期运动的一种,许多实际的周期运动并不是 谐振动.例如,各种乐器的振动大多不是谐振动.对小提琴的锯齿振
文档格式:DOC 文档大小:210.5KB 文档页数:3
第七章 定积分的应用 第一节定积分的几何应用 思考题: 1.什么叫微元法?用微元法解决实际问题的思路及步骤如何? 答:微元法就是运用“无限细分”和“无限累积”两个步骤解决实际问题的一种方 法,具体说来,即是对在区间[a,b]上分布不均匀的量F,先将其无限细分,得其微元 dF=f(x)dx然后将微元dF在[a,b上无限求和(累积)即得所求量 F=f=f(x)dx,求微元时,一般是对[a,b的子区间[x,x+dx]对应的部分量, 采用以“常代变”,“均匀代替不均匀”,“直代曲”的思路
首页上页178179180181182183184185下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1967 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有