点击切换搜索课件文库搜索结果(162)
文档格式:DOC 文档大小:6.63MB 文档页数:26
本章首先讨论 Lyapunov稳定性分析,然后介绍线性二次型最优控制问题。 我们将使用 Lyapunov稳定性方法作为线性二次型最优控制系统设计的基础。 应用于线性定常系统的稳定性分析方法很多然而,对于非线性系统和线 性时变系统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。 Lyapunov稳定性分析是解决非线性系统稳定性问题的一般方法
文档格式:DOC 文档大小:250KB 文档页数:13
能控性(controllability)和能观测性(observability)深刻地揭示了系统的内部结构关系,由 .e.Kalman于60年代初首先提出并研究的这两个重要概念,在现代控制理论的研究与实 践中,具有极其重要的意义,事实上,能控性与能观测性通常决定了最优控制问题解的存 在性。例如,在极点配置问题中,状态反馈的的存在性将由系统的能控性决定;在观测器 设计和最优估计中,将涉及到系统的能观测性条件
文档格式:DOC 文档大小:211KB 文档页数:13
一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分 析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析 与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。 经典控制理论是建立在系统的输入输出关系或传递函数的基础之上的,而现代控制理 论以n个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量矩阵微分方程。应 用向量矩阵表示方法,可极大地简化系统的数学表达式
文档格式:DOC 文档大小:1.61MB 文档页数:53
前已指出,对于状态完全能控的线性定常系统,可以通过线性状态反馈任意配置闭 系统的极点。事实上,不仅是极点配置,而且系统镇定、解耦控制、线性二次型最优控制 (LQ)问题等,也都可由状态反馈实现。然而,在4.2节介绍极点配置方法时,曾假设所有 的状态变量均可有效地用于反馈。但在实际情况中,并非所有的状态度变量都可用于反 馈。这时需要估计不可量测的状态变量。需特别强调,应避免将一个状态变量微分产生另 一个状态变量,因为噪声通常比控制信号变化更迅速,所以信号的微分总是减小了信噪 比
文档格式:PPT 文档大小:375.5KB 文档页数:20
控制系统的动态(又叫瞬态)响应是指系 统从初始状态到接近稳定状态的响应。 动态响应对稳定系统才有意义。对不稳定 系统,其响应是发散的。 我们通常以系统在单位阶跃输入时的响应 特性,来衡量系统性能的优劣和定义时域性能 指标
文档格式:PPT 文档大小:658.5KB 文档页数:23
控制系统的校正方法通常采用的有两种: 1. 分析法。分析法实际上是一种试探的方法,可归结为: 原系统频率特性+校正装置频率特性=希望频率特性 G0 (jω) Gc (jω) G(jω) 从原有的系统频率特性出发,根据分析和经验,选取合 适的校正装置,使校正后的系统满足性能要求
文档格式:PPT 文档大小:401.5KB 文档页数:15
长期以来,PID(比例—积分—微分)调节器一直作为工业控制上的主要调节装置而得到广泛应用。 PID调节器有如下一些特点:
文档格式:PPT 文档大小:235.5KB 文档页数:22
一、系统的稳定性 如果一个线性定常系统在扰动作用消失后,能 够恢复到原始的平衡状态,即系统的零输入响应 是收敛的,则称系统是稳定的。 反之,若系统不能恢复到原始的平衡状态, 即系统的零输入响应具有等幅震荡或发散性质, 则称系统是不稳定的
文档格式:PPT 文档大小:514.5KB 文档页数:25
一、误差与稳态误差 1.定义 ⑴ 误差的两种定义: a. 从输出端定义:等于系统输出量的实际值与希望值之差。 这种方法在性能指标提法中经常使用,但在实际系统中 有时无法测量。因此,一般只具有数学意义
文档格式:PDF 文档大小:7.74MB 文档页数:600
第一章状态方程 第二章转移矩阵 箄三章能控性与能观测性 筧四章变分法与最优控制 第五章最大值原理 第六章动态规划 第七章线性最优控制系统 第八章基本估计理论 第九章卡尔曼滤波
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 162 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有