点击切换搜索课件文库搜索结果(253)
文档格式:DOC 文档大小:87KB 文档页数:2
第二章2矩阵的秩 2.1.1矩阵的行秩与列秩、矩阵的转置 定义2.1矩阵的行秩与列秩。 一个矩阵A的行向量组的秩成为A的行秩它的列向量组的秩称为A的列秩。 命题2.1矩阵的行(列)初等变换不改变行(列)秩 证明只需证明行变换不该行秩。容易证明经过任意一种初等行变换,得到的行向 量组与原来的向量组线性等价,所以命题成立。证毕。 定义2.2矩阵的转置 把矩阵A的行与列互换之后,得到的矩阵A称为矩阵A的转置矩阵 命题2.2矩阵的行(列)初等变换不改变列(行)秩
文档格式:DOC 文档大小:197.5KB 文档页数:2
4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组
文档格式:DOC 文档大小:77.5KB 文档页数:1
4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属于特征值λ的特征向量。命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。证明设51,52是属于的特征向量,Vk,∈K
文档格式:DOC 文档大小:1.74MB 文档页数:11
1.利用定积分定义计算由抛物线y=x2+1,两直线x=a、x=bb>a)及横轴所围成的图形的面积
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:DOC 文档大小:253.5KB 文档页数:5
12-3张量 12.3.1线性变换的张量积的矩阵与线性变换的矩阵的关系 设V是域K上的n维线性空间,G和是V的两组基,且 (n)= (1) 设a∈V在(1n)下的坐标为(x1,x),则由前面的知识,可得 x :=T (2) ) 由此可知,坐标是逆变的 现在考虑V的对偶空间n在的对偶基为f,在v的 对偶基为gg,那么就有
文档格式:PDF 文档大小:182.45KB 文档页数:30
一、本单元的内容要点 1函数单调性的判别法 设f∈C[a,b]∩D(a,b),若Vxe(ab),有f(x)>0(<0) 则f(x)在[ab]上是单调增加(减少). 若当x1时,有f(x)≥0(≤0),且使得f(x)=0的 点(驻点)在的任何有界子区间内只有有限多个,则f(x) 在上单调增加(减少)
文档格式:DOC 文档大小:356KB 文档页数:9
例求下类平面曲线的弧长 1.曲线y=n(-x2)相应于0sx≤的一段 2.心形线r=a(1+cos)的全长(a>0) 3.摆线{x=1-cost0sts2的一
文档格式:PPT 文档大小:970.5KB 文档页数:60
1、下列结论正确的(A) (A)若un2,∑vn2都收敛,则(un+vn)2收敛。 (B)若∑unvn收敛,则un2,∑vn2都收敛 (C)若正项级数un发散则un≥ (D)若un收敛且un≥vn则vn收敛
文档格式:PPT 文档大小:858KB 文档页数:37
一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由a,b] 上连续的两条曲线y=f(x)与y=g(x) (f(x)≥g(x)及两条直线x=ax=b所围成 在[a,b]上任取典型小区间[x,x+dx 与它相对应的小曲边梯形的面积为局部量dA
首页上页1819202122232425下页末页
热门关键字
搜索一下,找到相关课件或文库资源 253 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有