点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:181.5KB 文档页数:11
12.9二阶常系数非齐次线性微分方程 一、f(x)=Pm(x)e型 二、f(x)=ex[P(x)coSox+px)sinox]型 方程y\+py+qy=f(x)称为二阶常系数非齐次线性微分方程,其中p、q是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y=Y(x)与非齐次方程本身的一个特解y=y*(x)之和:
文档格式:PPT 文档大小:43KB 文档页数:1
讨论若P(x) 则limP(x)= x→x0 提示 lim P(x)= lim (anx\)+lim (axn-I)++ lim (an-x)+ lim an
文档格式:PPT 文档大小:2.58MB 文档页数:71
一、函数项级数的一般概念 1.定义: 设u1(x),u2(x),,n(x),…是定义在IR上的 ∞ 函数,则∑un(x)=(x)+2(x)+…+un(x)+ n=1 称为定义在区间上的(函数项)无穷级数 ∞
文档格式:DOC 文档大小:433.5KB 文档页数:5
9.1.7用形式微商判断多项式是否有重因式 定义9.10设f(x)=axn+a1x-+…+anx+an∈K[x],定义 f(x)=naxn-+(n-1)a1xn-2+…+an-∈[x] 称f(x)为f(x)的一阶形式微商
文档格式:PPT 文档大小:858KB 文档页数:37
一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由a,b] 上连续的两条曲线y=f(x)与y=g(x) (f(x)≥g(x)及两条直线x=ax=b所围成 在[a,b]上任取典型小区间[x,x+dx 与它相对应的小曲边梯形的面积为局部量dA
文档格式:DOC 文档大小:434KB 文档页数:4
9.1.7用形式微商判断多项式是否有重因式 定义9.10设f(x)=ax+a1x+…+an-1x+an∈K[x],定义 f\(x)=na\+(n-1)\-+..+[], 称f(x)为f(x)的一阶形式微商
文档格式:PDF 文档大小:10.33MB 文档页数:137
第一节微分方程的基本概念 (Basic concept of differential equations) 一问题的提出 二微分方程的定义 (Definition of differential equations) 三 主要问题——求方程的解 四 小结思考判断题 第二节可分离变量的微分方程 (Differential equations of the variables separated) 可分离变量的微分方程 二 典型例题 小结与思考题 第三节齐次方程 (Homogeneous equation) 一齐次方程 二可化为齐次的方程 三小结思考题 第四节一阶线性微分方程 (Linear differential equation of first order) 一线性方程 (Linear differential equation) 二伯努利方程 (Bernoulli differential equation) 小结 思考判断题 第五节全微分方程 (Total differential equation) -全微分方程及其求法 二积分因子法 小结与思考题 第六节可降阶的高阶微分方程 y(\=f(x,y,..,y(\-)型 二y\=f(x,y',.·,y(\-①)型 恰当导数方程 四齐次方程 五小节与思考题 第七节高阶线性微分方程 (Higher linear differential equation) 概念的引入 线性微分方程的解的结构 降阶法与常数变易法 四小结思考题 第八节常系数齐次线性微分方程 (Constant coefficient homogeneous linear differential equation) 一定义(Definition) 二二阶常系数齐次线性方程解法 三n阶常系数齐次线性方程解法 四小结与思考题 第九节常系数非齐次线性微分方程 (Constant coefficient non-homogeneous linear differential equation) 一f(x)=exPm(x)型 二f(x)=ex[P,(x)cos cax+P,(x)sin cax]型 三小结思考题
文档格式:PPT 文档大小:161KB 文档页数:17
一.判断线性系统 x(n) y(n) T[] 如果y(n)=[x1(n),y2(n)=T[x2(n) 有 Ta1x1(n)+a2x2(n)=a1[x1(n)+a2T[x2(n) 则系统为线性系统
文档格式:DOC 文档大小:133KB 文档页数:4
一、填空题(满分15分) 1.已知P(B)=0.3,P(AB)=0.7,且A与B相互独立,则P(A)= 学 2.设随机变量X服从参数为二项分布,且P{X=0}=,则p= 号: 3.设X~N(3,02),且PX<0}=0.1,则P{3
文档格式:DOC 文档大小:157KB 文档页数:4
一、填空题(满分15分) 1.已知P(B)=0.3,P(AB)=0.7,且A与B相互独立,则P(A)= 学 2.设随机变量X服从参数为的泊松分布,且P{X=0}=,则= 号: 3.设X~N(2,2),且P(2
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有