点击切换搜索课件文库搜索结果(1126)
文档格式:PPT 文档大小:18.51MB 文档页数:39
n(元)维随机变量(向量) 称同一个样本空间Ω上的n个随机变量 X1,2,…,Xn构成的n维向量(X1,2,Xn) 为Ω上的n维随机变量(向量) 注:一维随机变量即为上一节介绍的随机变量, 二维及二维以上的随机变量称为多维随机变量
文档格式:PDF 文档大小:648.63KB 文档页数:9
为解决进行PM2.5质量浓度预测中多因素回归模型的不稳定、神经网络模型的过拟合及局部最小等问题,提出应用支持向量机和模糊粒化时间序列相结合的方法,对PM2.5质量浓度未来变化趋势和范围进行预测.根据PM2.5不同季节的日变化周期模式,确定以24 h为周期的粒化窗宽,利用三角型隶属函数对数据样本进行特征提取作为支持向量机的输入,并在k重交叉验证法下采用网格划分寻找出模型的最佳参数.以2013年3月—2014年2月北京市海淀区万柳监测点四个季节PM2.5的1 h质量浓度监测值为样本数据,应用该方法建立PM2.5质量浓度的时间序列预测模型,并在MATLAB平台下应用LIBSVM工具实现计算过程.结果表明,基于模糊粒化时间序列的预测模型,能较好解决PM2.5机理性建模方式下由于影响因素考虑不全而造成的预测结果不稳定,对模糊粒子拟合效果较好
文档格式:PDF 文档大小:368.72KB 文档页数:25
1.设向量β可由向量组a1,a2,……,as线性表示,但不能由a1,a2,…,a-1线性表示证明:向量
文档格式:PPT 文档大小:542KB 文档页数:48
第2.1节 随机向量及其分布 第2.2节 随机向量的联合分布函数
文档格式:PPT 文档大小:220.5KB 文档页数:14
这一章,我们为学习多元函数微积分学 作准备,介绍空间解析几何和向量代数。这 是两部分相互关联的内容。用代数的方法研 究空间图形就是空间解析几何,它是平面解 析几何的推广。向量代数则是研究空间解析 几何的有力工具。这部分内容在自然科学和 工程技术领域中有着十分广泛的应用,同时 也是一种很重要的数学工具
文档格式:PDF 文档大小:1.21MB 文档页数:8
提出一种基于灰度信息和支持向量机的人眼检测方法.首先,利用人眼区域灰度变化比人脸其他部位灰度变化明显的特征,采用图像灰度二阶矩(方差)建立人眼方差滤波器,在固定人眼搜索区域内,应用人眼方差滤波器搜索候选人眼图像;然后,使用训练的支持向量机分类器精确检测人眼区域位置;最后,采用图像灰度信息率定位人眼中心(虹膜中心).该方法在BioID、FERET和IMM人脸数据库中的测试结果显示:没有佩戴眼镜人脸图像正确率分别为98.2%、97.8%和98.9%,406幅佩戴眼镜人脸图像正确率为94.9%;人眼中心定位正确率分别为90.5%、88.3%和96.1%.通过与目前方法比较,该方法获得较好的检测效果
文档格式:PDF 文档大小:74.96KB 文档页数:7
向量组的正交性 一、向量的内积:
文档格式:PDF 文档大小:158.15KB 文档页数:7
《概率论》课程教学资源(教案讲义)第二章 随机变量及其概率分布 2.6 关于分布函数 第三章 随机向量及其概率分布 3.1 连续型随机向量及其概率密度函数 3.2 离散型随机向量及边缘分布函数
文档格式:PDF 文档大小:1.26MB 文档页数:10
随着物联网技术的发展,前端传感器的使用使得低合金钢的海水腐蚀监测成为了现实,从而获得了大量的腐蚀数据。针对传统均值法处理双率腐蚀数据带来的数据信息损失以及建模精度下降问题,提出了一种基于综合指标值(CIV)和改进相关向量回归(IRVR)的双率腐蚀数据处理和建模算法(CIV-IRVR)。首先,通过构建CIV表征输入数据的综合影响并采用天牛须搜索(BAS)算法对其参数进行寻优;然后,建立最优CIV序列与输出数据间的线性回归模型将双率数据转化为建模用的单率数据,能够更多地保留原始数据信息;最后,给出了一种BAS算法优化的具有组合核函数的改进相关向量回归建模方法(IRVR),并建立了针对低合金钢海水腐蚀双率数据的CIV-IRVR预测模型。结果表明:相比于均值方法处理双率腐蚀数据,所提方法将建模样本数量由196提升到了1834;相比于海水腐蚀建模领域常用的人工神经网络(ANN)和支持向量回归(SVR)建模方法,所提模型的平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(CD)分别为1.1914 mV、1.5729 mV以及0.9963,在各项指标上均优于对比算法,说明所提模型不仅减少了信息损失还提高了建模精度,对于双率海水腐蚀数据建模具有一定现实意义
文档格式:PDF 文档大小:1.27MB 文档页数:9
选取某4000 m3级别高炉2014年至2019年时间范围内的日平均数据,以铁水温度为目标函数,首先对铁水温度的特征参量进行线性与非线性相关性分析、特征选择与规范化处理,获取了显著影响铁水温度的正负相关性特征参量。在此基础上,基于支持向量回归与极限学习机两种算法对铁水温度构建预测模型,模型均可对铁水温度实现有效预测,基于支持向量回归算法构建的预测模型较优,预测平均绝对误差为4.33 ℃,±10 ℃误差范围内的命中率为94.0%
首页上页2526272829303132下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1126 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有