点击切换搜索课件文库搜索结果(350)
文档格式:PDF 文档大小:4.6MB 文档页数:9
分析了影响转炉冶炼终点钢水中锰含量的因素, 针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢, 预测精度低等问题, 提出了一种基于极限学习机(ELM) 算法建模的新思路, 并引入正则化以及改进粒子群优化算法(IPSO), 建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM) 的转炉终点锰含量预测模型; 应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证, 并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明, 采用IPSO-RELM方法构建的模型, 锰含量预测误差在±0. 025%范围内的命中率达到94%, 均方误差为2. 18×10-8, 拟合优度R2为0. 72, 上述三项指标均显著优于其他三类模型, 此外, 该模型还具有良好的泛化能力, 对于转炉实际冶炼过程具有一定的指导意义
文档格式:PDF 文档大小:531.27KB 文档页数:7
由于转炉冶炼过程中的热力学和动力学反应复杂,副枪控制模型和传统的烟气分析模型存在很大的局限性,导致了转炉冶炼终点碳含量的预测精度偏低,是实现智能炼钢的主要技术瓶颈. 针对上述问题,提出了基于烟气分析的炼钢过程函数型数字孪生模型. 首先,利用烟气分析得到连续监测的实时数据,以此来实时监控转炉熔池内钢水的碳氧反应状态; 然后,根据熔池反应所处的不同阶段,利用函数型数据分析方法建立吹炼前期和吹炼后期的函数型预测模型; 在此基础上,按照吹炼前期和吹炼后期这两个阶段来分别自动修正模型中的系数函数,从而能在复杂的实际工况条件下完成对熔池碳含量的准确预测. 通过260 t氧气转炉的工业应用实例,证实函数型数字孪生模型具有良好的自学习和自适应能力,对异常冶炼状态具有良好的鲁棒性,可以实现全过程的熔池碳含量动态预测,终点碳质量分数在± 0. 02% 范围内的命中率为95%. 利用函数型数字孪生模型在拉碳阶段对钢水中碳含量的预测值来控制终吹点. 更为重要的是,在保证入炉原料成分、温度、质量等参数稳定的前提下,采用该模型可以有望取消基于副枪的停吹取样步骤,从而降低生产成本,提高产品质量和生产效率,具有广泛的工业应用前景
文档格式:PDF 文档大小:242.22KB 文档页数:20
一、运输需求量预测的基本概念 (一)预测的基本概念 预测是人们预选的、事前的对某事物发展的一种推测,一种测算,测算事物发展变化可 能出现的前景和趋势,有时还要推测事物发展变化可能达到的水平和规模,推测事物间相互 联系、相互制约、相互影响以及影响程度等等。 运输需求量预测就是根据运输及其相关变量过去发展变化的客观过程和规律性,参照当 前已经出现和正在出现的各种可能性,运用现代管理的、数学的和统计的方法,对运输及其 相关变量未来可能出现的趋势和可能达到的水平的一种科学推测
文档格式:PDF 文档大小:624.33KB 文档页数:6
在已开发的热泵流化床谷物干燥设备研究基础上对其中的热泵进行了实验研究,得出干燥实验系统热泵供风温度以及供热系数的影响因素及其影响规律.通过对实验结果进行细致的理论分析,发现增大蒸发器回路风量与降低冷凝器出口风温可以显著改善热泵性能.依此拟定了热泵改进方案,预测了改进后热泵的性能指标,分析比较了相应干燥系统的经济效益.结果显示,改进后的热泵供热系数可达到3.856,干燥费用进一步降低
文档格式:PDF 文档大小:653.64KB 文档页数:7
通过测量大庆地区区域土壤的理化性质以及碳钢的短期腐蚀数据,分析土壤传质过程的逻辑关系,构建了碳钢短期土壤腐蚀预测模型.通过用该模型在BP人工神经网络中进行学习、训练及模拟,并与现场碳钢埋片腐蚀实验结果对比,进一步验证了腐蚀模型的合理性.结果表明:含水量、空气容量、pH、Cl-含量、SO42-含量和可溶盐总量六种土壤环境参数为影响区域土壤中碳钢腐蚀的主要因素;运用基于Matlab平台的人工神经网络,通过不断地积累土壤腐蚀信息,多次训练后可以建立起稳定性好、泛化能力强的土壤腐蚀预测模型,能较好地预测了大庆地区碳钢在土壤中的腐蚀速率
文档格式:PDF 文档大小:1.74MB 文档页数:10
为解决RNN–T语音识别时预测错误率高、收敛速度慢的问题,本文提出了一种基于DL–T的声学建模方法。首先介绍了RNN–T声学模型;其次结合DenseNet与LSTM网络提出了一种新的声学建模方法— —DL–T,该方法可提取原始语音的高维信息从而加强特征信息重用、减轻梯度问题便于深层信息传递,使其兼具预测错误率低及收敛速度快的优点;然后,为进一步提高声学模型的准确率,提出了一种适合DL–T的迁移学习方法;最后为验证上述方法,采用DL–T声学模型,基于Aishell–1数据集开展了语音识别研究。研究结果表明:DL–T相较于RNN–T预测错误率相对降低了12.52%,模型最终错误率可达10.34%。因此,DL–T可显著改善RNN–T的预测错误率和收敛速度
文档格式:PDF 文档大小:397.25KB 文档页数:6
针对联合循环发电厂(combined cycle power plant,CCPP)煤气系统因工况变化频繁带来的模型与过程不匹配的问题,提出一种基于OS-ELM (online sequential extreme learning machine)的CCPP副产煤气燃料系统在线性能预测方法.首先通过分析副产煤气系统各主要组成部件的工作原理,利用流体力学、质量守恒以及能量守恒等关系,建立起以离心压缩机、煤水分离器、冷却器等为核心部件的副产煤气系统机理模型.利用OS-ELM算法和滑动窗口技术对机理模型的输出误差进行修正,实现副产煤气系统出口参数的精确预测和模型的快速在线更新.仿真实验证明,该方法能够准确地预测副产煤气系统的输出压比和温比,并能够跟踪煤气系统工况的变化和特性的漂移,满足实际工业生产的需求
文档格式:PDF 文档大小:0.99MB 文档页数:13
铰接式车辆的路径跟踪控制是矿山自动化领域中的关键技术,而数学模型和路径跟踪控制方法是铰接式车辆路径跟踪控制中的两项重要研究内容。在数学模型研究中,铰接式车辆的无侧滑经典运动学模型较为适合作为低速路径跟踪控制的参考模型,而有侧滑运动学模型作为参考模型时则可能导致侧滑加剧。此外基于牛顿–欧拉法建立的铰接式车辆四自由度动力学模型原则上满足路径跟踪控制的需求,但是还需要解决当前的四自由度模型无法同时反映瞬态转向特性和稳态转向特性的问题。在路径跟踪控制方法研究中,反馈线性化控制、最优控制、滑模控制等无前馈信息的控制方法无法有效解决铰接式车辆跟踪存在较大幅度曲率突变的参考路径时误差较大的问题,前馈–反馈控制可以用于解决上述问题,但是在参考路径具有不同幅度的曲率突变时需要解决自动调整预瞄距离的问题,而模型预测控制,尤其是非线性模型预测控制,可以更加有效地利用前馈信息,且不需要考虑预瞄距离的设置,从而可以有效提高铰接式车辆跟踪存在较大幅度曲率突变的参考路径时的精确性。此外,对于基于非线性模型预测控制的铰接式车辆路径跟踪控制,还需深化三个方面的研究。首先,该控制方法仍然存在误差最大值随参考速度增大而增加的趋势。其次,目前该控制方法以运动学模型作为预测模型,无法解决铰接式车辆以较高的参考速度运行时侧向速度导致的精确性下降和安全性恶化的问题。最后,还需对这种控制方法进行实时性方面的优化研究
文档格式:PDF 文档大小:1.77MB 文档页数:11
提出了基于双偏心误差齿轮副的驱动齿面与齿背面(双齿面)无负载传动误差计算模型,建立与时变侧隙计算公式的等价关系,从理论上证明了基于双齿面传动误差的侧隙测量方法。通过实验方法测量不同负载力矩、不同初始啮合面的双面传动误差并获得相应载荷下的初始回差。基于双齿面传动误差实验曲线,实现了对齿轮副整个大周期侧隙的连续测量与预测。结果表明,连续侧隙曲线与机械滞后回差法测量结果吻合良好,而侧隙预测较好地反应了侧隙值变化范围和变化趋势。同时,侧隙连续测量方法及侧隙预测均证明了理论模型的正确性,提高了侧隙测量效率并获得了更全面的侧隙数据,对齿轮传动的非线性研究、消隙控制以及齿轮精度研究等均具有指导意义和参考价值
文档格式:PDF 文档大小:1.47MB 文档页数:58
第一节 灰色系统的概念与基本原理 一、灰色系统理论产生和发展动态 二、几种不确定方法的比较 三、灰色系统理论的基本概念 四、灰色系统理论的基本原理 五、灰色系统理论的主要内容及特点 六、灰数 第二节 序列算子与灰色序列生成 一、冲击扰动系统与序列算子 二、缓冲算子公理 三、实用缓冲算子的构造 四、均值生成算子 五、序列的光滑性 六、级比生成算子 七、累计生成算子与累减生成算子 八、灰指数律 第三节 灰色关联分析 一、灰色关联因素和关联算子集 二、灰色关联公理与灰色关联度 三、灰色关联分析的应用举例 四、广义灰色关联度 五、灰色相对关联度 六、灰色综合关联度 第四节 灰色系统模型 一、GM(1,1)模型 二、残差 GM(1,1)模型 三、灰色系统模型的检验 四、应用举例 第五节 灰色系统预测 一、灰色预测概述 二、数列预测 三、古树屋边坡变形预测
首页上页2627282930313233下页末页
热门关键字
搜索一下,找到相关课件或文库资源 350 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有