点击切换搜索课件文库搜索结果(27)
文档格式:PDF 文档大小:3.04MB 文档页数:138
本书由二十七篇论文组成,内容分为两个部分:理论部分、应用及软件部分。理论部分包括了蒙特卡罗方法基础、伪随机数的产生、已知分布抽样;应用及软件部分覆盖了蒙特卡罗方法的主要应用领域。本书基本上反映了自1993年西安会议以来我国在蒙特卡罗方法研究和应用方西的水平愿本书能成为蒙特卡罗方法研究和应用的最重要参考书之一
文档格式:PDF 文档大小:743.65KB 文档页数:101
§5.1 孤立奇点 1. 孤立奇点定义 2. 孤立奇点分类 3. 孤立奇点性质 4. 零点与极点的关系 §5.2 留数  1. 留数的定义和定理  2. 留数的计算规则  3. 在无穷远点的留数 §5.3 留数在定积分计算的应用 §5.4 对数留数与幅角原理 1、对数留数 2、辐角原理 3、路西定理 4、小结与思考
文档格式:PDF 文档大小:15MB 文档页数:535
第一部分公式体系及其解释 第一章量子论的起源 第二章物质波与薛定谔方程 第三章一维量子化体系 第四章 统计解释与测不准关系 第五章 波动力学的发展及其解释 第六章 经典近似与WKB方法 第七章 量子论的一般形式(A)数学框架 第八章 量子论的一般形式(B)物理内容 第二部分简单体系 第九章分离变量中心势 第十章散射问题相移 第十一章库仑相互作用 第十二章谐振子
文档格式:DOC 文档大小:18KB 文档页数:1
一、内容简介 以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整 个微分学的理论基础,尤其是拉格朗日中值定理.它们建立了函数值与导数值之 间的定量联系,因而可用中值定理通过导数去研究函数的性态;中值定理的主要 作用在于理论分析和证明;同时由柯西中值定理还可导出一个求极限的洛必达法 则.中值定理的应用主要是以中值定理为基础,应用导数判断函数上升、下降、 取极值、凹形、凸形和拐点等项的重要性态从而能把握住函数图象的各种几何 特征.此外,极值问题有重要的实际应用
文档格式:DOC 文档大小:18KB 文档页数:1
以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整 个微分学的理论基础,尤其是拉格朗日中值定理.它们建立了函数值与导数值之 间的定量联系,因而可用中值定理通过导数去研究函数的性态;中值定理的主要 作用在于理论分析和证明:同时由柯西中值定理还可导出一个求极限的洛必达法 则.中值定理的应用主要是以中值定理为基础,应用导数判断函数上升、下降 取极值、凹形、凸形和拐点等项的重要性态。从而能把握住函数图象的各种几何 特征.此外,极值问题有重要的实际应用
文档格式:PDF 文档大小:851.39KB 文档页数:112
0.1 前言 1.1 实数的表达与性质 1.2 确界原理 1.3 函数:描述关系的模型 1.4 一些不等式 2.1 数列极限引入 2.2 收敛数列的性质 2.3 收敛数列的判定 2.4 子数列 2.5 数列极限题目 3.1 函数极限引入 3.2 函数极限定义 3.3 函数极限的定理 3.4 两个重要极限 3.5 无穷小与无穷大 4.1 连续函数的概念 4.2 间断点及其分类 4.3 连续函数的性质定理 4.4 闭区间上连续函数的定理 4.5 反函数的连续性 4.6 函数的一致连续性 4.7 初等函数的连续性 5.1 导数的概念 5.2 求导法则 5.3 高阶导数 5.4 微分 5.5 导函数的介值性 6.1 罗尔中值定理 6.2 拉格朗日中值定理 6.3 柯西中值定理 6.4 洛必达法则
文档格式:PDF 文档大小:4.22MB 文档页数:187
第一章 矩阵的相似变换 §1.1特征值与特征向量 §1.2相似对角化 §1.3 Jordan标准形介绍 §1.4 Hamilton-Cayley定理 §1.5向量的内积 §1.6西相似下的标准形 习题一 第二章 范数理论 §2.1向量范数 §2.2矩阵范数 一、方阵的范数 二、与向量范数的相容性 三、从属范数 四、长方阵的范数 §2.3范数应用举例 一、矩阵的谱半径 二、矩阵的条件数 习题二 第三章 矩阵分析 §3.1矩阵序列 §3.2矩阵级数 §3.3矩阵函数 一、矩阵函数的定义 二、矩阵函数值的计算 三、常用矩阵函数的性质 §3.4矩阵的微分和积分 一、函数矩阵的微分和积分 二、数量函数对矩阵变量的导数 三、矩阵值函数对矩阵变量的导数 §3.5矩阵分析应用举例 一、求解一阶线性常系数微分方程组 二、求解矩阵方程 三、最小二乘问题 习题三 第四章 矩阵分解 §4.1矩阵的三角分解 一、三角分解及其存在惟一性问题 二、三角分解的紧凑计算格式 §4.2矩阵的QR分解 一、Householder矩阵与Givens矩阵 二、矩阵的QR分解 三、矩阵酉相似于Hessenberg矩阵 §4.3矩阵的满秩分解 一、Hermite标准形 二、矩阵的满秩分解 §4.4矩阵的奇异值分解 习题四 第五章 特征值的估计与表示 §5.1特征值界的估计 §5.2特征值的包含区域 一、Gerschgorin定理 二、特征值的隔离 三、Ostrowski定理 §5.3 Hermite矩阵特征值的表示 §5.4广义特征值问题 一、广义特征值问题 二、广义特征值的表示 习题五 第六章 广义逆矩阵 §6.1广义逆矩阵的概念 §6.2 {1}-逆及其应用 一、{1}-逆的计算及有关性质 二、{1}-逆的应用 三、由{1}-逆构造其他的广义逆矩阵 §6.3 Moore-Penrose逆A+ 一、A+的计算及有关性质 二、A+在解线性方程组中的应用 习题六 第七章 矩阵的直积 §7.1直积的定义和性质 §7.2直积的应用 一、矩阵的拉直及其与直积的关系 二、线性矩阵方程的可解性及其求解 习题七 习题答案与提示
上页123
热门关键字
搜索一下,找到相关课件或文库资源 27 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有